Journal of Materials Science

, Volume 45, Issue 19, pp 5191–5195 | Cite as

Master sintering curve applied to the Field-Assisted Sintering Technique

Article

Abstract

The master sintering curve approach was extended theoretically to the Field-Assisted Sintering Technique (or SPS). Experimental data from constant heating rate testing confirm the general applicability of this framework. An apparent activation energy of ~290 kJ/mol was found for ultrafine alumina below 1200 °C. As alumina densifies by grain boundary diffusion in the present conditions, this low value of the apparent activation energy might be due to thermal gradients in the specimens induced by rapid heating.

Notes

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft (Emmy Noether Program GU993-1/1). Michael Hoffmann is acknowledged for providing access to his FAST setup.

References

  1. 1.
    Su H, Johnson DL (1996) J Am Ceram Soc 79(12):3211CrossRefGoogle Scholar
  2. 2.
    Hansen J, Rusin RP, Teng M, Johnson DL (1992) J Am Ceram Soc 75:1129CrossRefGoogle Scholar
  3. 3.
    Johnson DL (2003) In: Messing G (ed) International conference on the science, technology, application of sintering, Pennsylvania, USA, pp. 15–17Google Scholar
  4. 4.
    Kiani S, Pan J, Yeomans JA (2006) J Am Ceram Soc 89(11):3393CrossRefGoogle Scholar
  5. 5.
    Ewsuk KG, Ellerby DT, Diantanio CB (2006) J Am Ceram Soc 89(6):2003CrossRefGoogle Scholar
  6. 6.
    Blaine DC, Gurosik JD, Park SJ, Heaney DF, German RM (2006) Metall Mater Trans 37A(3):715CrossRefGoogle Scholar
  7. 7.
    Mazaheri M, Simchi A, Dourandish M, Golestani-Fard F (2009) Ceram Int 35:547CrossRefGoogle Scholar
  8. 8.
    Hillman SH, German RM (1992) J Mater Sci 27:2641CrossRefADSGoogle Scholar
  9. 9.
    Raether F, Schulze Horn P (2009) J Eur Ceram Soc 29:2225CrossRefGoogle Scholar
  10. 10.
    Park SJ, Suri P, Olevsky E, German RM (2009) J Am Ceram Soc 92(7):1410CrossRefGoogle Scholar
  11. 11.
    An K, Johnson DL (2002) J Mater Sci 37:4555CrossRefGoogle Scholar
  12. 12.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi: 10.1007/s10853-006-6555-2 CrossRefADSGoogle Scholar
  13. 13.
    Chaim R, Shen ZJ (2008) J Mater Sci 43:5023. doi: 10.1007/s10853-008-2742-7 CrossRefADSGoogle Scholar
  14. 14.
    Frage N, Cohen S, Meir S, Kalabukhov S, Dariel MP (2007) J Mater Sci 42:3273. doi: 10.1007/s10853-007-1672-0 CrossRefADSGoogle Scholar
  15. 15.
    Zeng H, Kuang CJ, Zhang JX, Yue M (2009) J Mater Sci 44:5509. doi: 10.1007/s10853-009-3769-0 CrossRefADSGoogle Scholar
  16. 16.
    Coble RL, Ellis JS (1963) J Am Ceram Soc 46(9):438CrossRefGoogle Scholar
  17. 17.
    Rahaman NM. (2003) Ceramic processing and sintering. Marcel Dekker Inc, New YorkGoogle Scholar
  18. 18.
    Langer J, Hoffmann MJ, Guillon O (2009) Acta Mater 57:5454CrossRefGoogle Scholar
  19. 19.
    Zuo R, Rödel J (2004) Acta Mater 52:3059CrossRefGoogle Scholar
  20. 20.
    Aminzare M, Golestani-Fard F, Guillon O, Mazaheri M, Rezaie HR, Mater Sci Eng A. doi: 10.1016/j.msea.2010.03.051
  21. 21.
    Bernard-Granger G, Guizard C, Addad A (2007) J Mater Sci 42:6316. doi: 10.1007/s10853-006-1206-1 CrossRefADSGoogle Scholar
  22. 22.
    Olevsky EA, Kandukuri S, Froyen L (2007) J Appl Phys 102:114913CrossRefADSGoogle Scholar
  23. 23.
    Maizza G, Grasso S, Sakka Y (2009) J Mater Sci 44:1219. doi: 10.1007/s10853-008-3179-8 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Technische Universität DarmstadtInstitute of Materials ScienceDarmstadtGermany

Personalised recommendations