Advertisement

Journal of Materials Science

, Volume 45, Issue 16, pp 4414–4421 | Cite as

Structure and properties of cocoons and silk fibers produced by Hyalophora cecropia

  • Narendra Reddy
  • Yiqi Yang
Article

Abstract

This paper shows that silk fibers produced by cecropia (Hyalophora cecropia) have similar tensile properties but different amino acid composition than that of mulberry (Bombyx mori) silk. The cecropia fibers are also much finer and have better strength and modulus than tasar silk, the most common non-mulberry silk. Cecropia is one of the largest silk producing moths and has similar lifecycle to that of mulberry silk but is easier to grow and produces larger cocoons than mulberry silk. In this study, we have characterized the composition, morphology, physical and tensile properties, and thermal behavior of the cecropia silk. Cecropia cocoons have a three tier structure and are larger (750 mg) than the cocoons produced by B. mori (650 mg). Fibers in the three layers in cecropia cocoons have tensile properties similar to that of B. mori silk but are finer (1.7–2 denier) and have higher strength (3.8–4.3 g/denier) and modulus (68–92 g/denier) than tasar silk.

Keywords

Tensile Property Intermediate Layer Silk Fiber Wheat Gluten Spider Silk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank the Agricultural Research Division at the University of Nebraska-Lincoln, USDA Hatch Act and Multi-state Project S1026 for their financial support to complete this research. The authors also thank James Kalisch with the Department of Entomology at the University of Nebraska-Lincoln and Nathan Brockam with Reiman Gardens, Ames, Iowa for their help in collecting the cecropia cocoons.

References

  1. 1.
    Robson RM (1998) In: Lewin M, Pearce EM (eds) Handbook of fiber chemistry. Marcel Dekker Inc, New YorkGoogle Scholar
  2. 2.
    Sen K, Babu M (2004) J Appl Polym Sci 92:1080CrossRefGoogle Scholar
  3. 3.
    Sen K, Babu MK (2004) J Appl Polym Sci 92:1098CrossRefGoogle Scholar
  4. 4.
    Reddy N, Yang Y (2007) Biomacromolecules 8(2):638CrossRefPubMedGoogle Scholar
  5. 5.
    Reddy N, Yang Y (2008) J Mater Sci Mater Med 19:2055CrossRefPubMedGoogle Scholar
  6. 6.
    Reddy N, Yang Y (2009) Biotechnol Prog 25(6):1796PubMedGoogle Scholar
  7. 7.
    Reddy N, Li Y, Yang Y (2009) J Agric Food Chem 57(1):90CrossRefPubMedGoogle Scholar
  8. 8.
    Reddy N, Li Y, Yang Y (2009) Biotechnol Prog 25(1):139CrossRefPubMedGoogle Scholar
  9. 9.
    Brauer S, Meister F, Gottlober R, Nechwatal A (2007) Macromol Mater Eng 292:176CrossRefGoogle Scholar
  10. 10.
    Reddy N, Yang Y (2010) Int J Biol Macromol 46(4):419CrossRefPubMedGoogle Scholar
  11. 11.
    Wagner DL (2005) Caterpillars of eastern North America. Princeton University Press, Princeton, New JerseyGoogle Scholar
  12. 12.
    Waldbauer GP, Scarbrough AG, Sternburg JG (1982) Entomol Exp Appl 31:191Google Scholar
  13. 13.
    Moore AJ, Beazley WD, Bibby MC, Devine DA (1996) Antimicrob Chemother 37(6):1077CrossRefGoogle Scholar
  14. 14.
    Engstroem P, Carlsoon A, Engstroem A, Tao ZJ, Bennich H (1984) EMBO J 3(13):3347Google Scholar
  15. 15.
    Steiner H (1982) FEBS Lett 137(2):283CrossRefPubMedGoogle Scholar
  16. 16.
    Hummerich D, Slotta U, Scheibel T (2006) Appl Phys A 82:219CrossRefADSGoogle Scholar
  17. 17.
    Siedel A, Liivak O, Calve S, Adaska J, Ji G, Yang Z, Grubb D, Zax DB, Jelinski LW (2000) Macromolecules 33:75Google Scholar
  18. 18.
    Fedic R, Zurovec M, Sehnal F (2003) J Biol Chem 278(37):35255CrossRefPubMedGoogle Scholar
  19. 19.
    Van der Kloot WG, Williams GM (1953) Behavior 5(1):141CrossRefGoogle Scholar
  20. 20.
    Van der Kloot WG, Williams GM (1953) Behavior 5(1):157CrossRefGoogle Scholar
  21. 21.
    Rau P (1911) Psyche 18:168Google Scholar
  22. 22.
    Lounibos LP (1976) Physiol Entomol 1(3):195CrossRefGoogle Scholar
  23. 23.
    Saha M, Mahendran B, Kundu SC (2008) J Econ Entomol 101(4):1176CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao H, Feng X, Yu S, Cui W, Zou F (2005) Polymer 46:9192CrossRefGoogle Scholar
  25. 25.
    Jiang P, Liu H, Wang C, Wu L, Huang J, Guo C (2006) Mater Lett 60:919CrossRefGoogle Scholar
  26. 26.
    Sirichaisit J, Brookes VL, Young RJ, Vollrath F (2003) Biomarocmolecules 4:387CrossRefGoogle Scholar
  27. 27.
    Silberman AK, Lewis HB (1932) J Biol Chem 95:491Google Scholar
  28. 28.
    Das S, Chattopadhyay R, Gulrajani ML, Sen K (2004) In: 3rd Indo-Czech textile research conferences, Liberec, Czech Republic, 14–16 JuneGoogle Scholar
  29. 29.
    Kameda T, Tsukada M (2006) Macromol Mater Eng 291:877CrossRefGoogle Scholar
  30. 30.
    Zhang H, Magoshi J, Becker M, Chen J, Matsunaga R (2002) J Appl Polym Sci 86:1817CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Textiles, Clothing & DesignUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Biological Systems EngineeringUniversity of Nebraska-LincolnLincolnUSA
  3. 3.Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations