Advertisement

Journal of Materials Science

, Volume 45, Issue 15, pp 4151–4157 | Cite as

NO X reduction over paper-structured fiber composites impregnated with Pt/Al2O3 catalyst for exhaust gas purification

  • Hirotaka Koga
  • Hirotake Ishihara
  • Takuya Kitaoka
  • Akihiko Tomoda
  • Ryo Suzuki
  • Hiroyuki Wariishi
Article

Abstract

Pt/Al2O3 catalyst powder was successfully incorporated in a microstructured paper-like matrix composed of a ceramic fiber network, by use of a simple papermaking technique. As-prepared composite, denoted paper-structured catalyst, was applied to the reduction of nitrogen oxide (NO X ) in the presence of propene, for exhaust gas purification. The paper-structured catalyst demonstrated higher NO X reduction efficiency and more rapid thermal responsiveness than a conventional Pt-loaded honeycomb catalyst, indicating that the paper-like structure with interconnected pore spaces contributes to effective transport of heat and reactants to the catalyst surfaces. Furthermore, the paper-structured catalyst with the appearance of flexible paperboard has a high degree of utility. The efficiency of utilization of Pt catalyst was improved by using hierarchically assembled paper-structured catalysts with preferential location of Pt catalyst in the upper part. The paper-structured catalyst composite with paper-like utility and porous microstructure is thought to be a promising catalytic material for efficient NO X gas purification.

Keywords

Catalyst Layer Pulp Fiber Catalyst Powder Excellent Catalytic Performance Paper Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by a Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science (H. K.) and by a Risk-Taking Fund for Technology Development from the Japan Science and Technology Agency (T. K.).

References

  1. 1.
    Zhou Q, Gullitti A, Xiao J, Huang Y (2008) Chem Eng Commun 195:706CrossRefGoogle Scholar
  2. 2.
    Twigg MV (2007) Appl Catal B 70:2CrossRefGoogle Scholar
  3. 3.
    Kašpar J, Fornasiero P, Hickey N (2003) Catal Today 77:419CrossRefGoogle Scholar
  4. 4.
    Santos H, Costa M (2008) Energy Convers Manag 49:291CrossRefGoogle Scholar
  5. 5.
    Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N (2002) Nature 418:164CrossRefPubMedADSGoogle Scholar
  6. 6.
    Tanaka H, Uenishi M, Taniguchi M, Tan I, Narita K, Kimura M, Kaneko K, Nishihata Y, Mizuki J (2006) Catal Today 117:321CrossRefGoogle Scholar
  7. 7.
    Sato T, Goto S, Tang Q, Yin S (2008) J Mater Sci 43:2247. doi: 10.1007/s10853-007-1960-8 CrossRefADSGoogle Scholar
  8. 8.
    Kiwi-Minsker L, Renken A (2005) Catal Today 110:2CrossRefGoogle Scholar
  9. 9.
    Bueno-López A, Lozano-Castelló D, Such-Basáñez I, García-Cortés JM, Illán-Gómez MJ, de Lecea CSM (2005) Appl Catal B 58:1CrossRefGoogle Scholar
  10. 10.
    Ercoli MA, Zamaro JM, Quincoces CE, Miró EE, González MG (2008) Chem Eng Commun 195:417CrossRefGoogle Scholar
  11. 11.
    Patcas FC, Garrido GI, Kraushaar-Czarnetzki B (2007) Chem Eng Sci 62:3984CrossRefGoogle Scholar
  12. 12.
    Twigg MV, Richardson JT (2007) Ind Eng Chem Res 46:4166CrossRefGoogle Scholar
  13. 13.
    Sun H, Zhang YB, Quan X, Chen S, Qu ZP, Zhou YL (2008) Catal Today 139:130CrossRefGoogle Scholar
  14. 14.
    Dixon AG, Taskin ME, Stitt EH, Nijemeisland M (2007) Chem Eng Sci 62:4963CrossRefGoogle Scholar
  15. 15.
    Chen GB, Chen CP, Wu CY, Chao YC (2007) Appl Catal A 332:89CrossRefGoogle Scholar
  16. 16.
    Fukahori S, Koga H, Kitaoka T, Nakamura M, Wariishi H (2008) Int J Hydrogen Energy 33:1661CrossRefGoogle Scholar
  17. 17.
    Chen GB, Chao YC, Chen CP (2008) Int J Hydrogen Energy 33:2586CrossRefGoogle Scholar
  18. 18.
    Koga H, Umemura Y, Ishihara H, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2009) Appl Catal B 90:699CrossRefGoogle Scholar
  19. 19.
    Ishihara H, Koga H, Kitaoka T, Wariishi H, Tomoda A, Suzuki R (2010) Chem Eng Sci 65:208CrossRefGoogle Scholar
  20. 20.
    Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Appl Catal A 300:155CrossRefGoogle Scholar
  21. 21.
    Koga H, Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Appl Catal A 309:263CrossRefGoogle Scholar
  22. 22.
    Koga H, Fukahori S, Kitaoka T, Nakamura M, Wariishi H (2008) Chem Eng J 139:408CrossRefGoogle Scholar
  23. 23.
    Koga H, Kitaoka T, Nakamura M, Wariishi H (2009) J Mater Sci 44:5836. doi: 10.1007/s10853-009-3823-y CrossRefADSGoogle Scholar
  24. 24.
    Koga H, Umemura Y, Tomoda A, Suzuki R, Kitaoka T (2010) ChemSusChem. doi: 10.1002/cssc.200900277
  25. 25.
    Koga H, Kitaoka T, Wariishi H (2008) Chem Commun 5616Google Scholar
  26. 26.
    Koga H, Kitaoka T, Wariishi H (2009) J Mater Chem 19:5244CrossRefGoogle Scholar
  27. 27.
    Pitukmanorom P, Ying JY (2009) Nano Today 4:220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hirotaka Koga
    • 1
  • Hirotake Ishihara
    • 1
  • Takuya Kitaoka
    • 1
  • Akihiko Tomoda
    • 2
  • Ryo Suzuki
    • 2
  • Hiroyuki Wariishi
    • 1
  1. 1.Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan
  2. 2.R & D Division, F. C. C. Co. Ltd.HamamatsuJapan

Personalised recommendations