Journal of Materials Science

, Volume 45, Issue 15, pp 4151–4157 | Cite as

NOX reduction over paper-structured fiber composites impregnated with Pt/Al2O3 catalyst for exhaust gas purification

  • Hirotaka Koga
  • Hirotake Ishihara
  • Takuya Kitaoka
  • Akihiko Tomoda
  • Ryo Suzuki
  • Hiroyuki Wariishi
Article

Abstract

Pt/Al2O3 catalyst powder was successfully incorporated in a microstructured paper-like matrix composed of a ceramic fiber network, by use of a simple papermaking technique. As-prepared composite, denoted paper-structured catalyst, was applied to the reduction of nitrogen oxide (NOX) in the presence of propene, for exhaust gas purification. The paper-structured catalyst demonstrated higher NOX reduction efficiency and more rapid thermal responsiveness than a conventional Pt-loaded honeycomb catalyst, indicating that the paper-like structure with interconnected pore spaces contributes to effective transport of heat and reactants to the catalyst surfaces. Furthermore, the paper-structured catalyst with the appearance of flexible paperboard has a high degree of utility. The efficiency of utilization of Pt catalyst was improved by using hierarchically assembled paper-structured catalysts with preferential location of Pt catalyst in the upper part. The paper-structured catalyst composite with paper-like utility and porous microstructure is thought to be a promising catalytic material for efficient NOX gas purification.

Notes

Acknowledgements

This research was supported by a Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science (H. K.) and by a Risk-Taking Fund for Technology Development from the Japan Science and Technology Agency (T. K.).

References

  1. 1.
    Zhou Q, Gullitti A, Xiao J, Huang Y (2008) Chem Eng Commun 195:706CrossRefGoogle Scholar
  2. 2.
    Twigg MV (2007) Appl Catal B 70:2CrossRefGoogle Scholar
  3. 3.
    Kašpar J, Fornasiero P, Hickey N (2003) Catal Today 77:419CrossRefGoogle Scholar
  4. 4.
    Santos H, Costa M (2008) Energy Convers Manag 49:291CrossRefGoogle Scholar
  5. 5.
    Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N (2002) Nature 418:164CrossRefPubMedADSGoogle Scholar
  6. 6.
    Tanaka H, Uenishi M, Taniguchi M, Tan I, Narita K, Kimura M, Kaneko K, Nishihata Y, Mizuki J (2006) Catal Today 117:321CrossRefGoogle Scholar
  7. 7.
    Sato T, Goto S, Tang Q, Yin S (2008) J Mater Sci 43:2247. doi:10.1007/s10853-007-1960-8 CrossRefADSGoogle Scholar
  8. 8.
    Kiwi-Minsker L, Renken A (2005) Catal Today 110:2CrossRefGoogle Scholar
  9. 9.
    Bueno-López A, Lozano-Castelló D, Such-Basáñez I, García-Cortés JM, Illán-Gómez MJ, de Lecea CSM (2005) Appl Catal B 58:1CrossRefGoogle Scholar
  10. 10.
    Ercoli MA, Zamaro JM, Quincoces CE, Miró EE, González MG (2008) Chem Eng Commun 195:417CrossRefGoogle Scholar
  11. 11.
    Patcas FC, Garrido GI, Kraushaar-Czarnetzki B (2007) Chem Eng Sci 62:3984CrossRefGoogle Scholar
  12. 12.
    Twigg MV, Richardson JT (2007) Ind Eng Chem Res 46:4166CrossRefGoogle Scholar
  13. 13.
    Sun H, Zhang YB, Quan X, Chen S, Qu ZP, Zhou YL (2008) Catal Today 139:130CrossRefGoogle Scholar
  14. 14.
    Dixon AG, Taskin ME, Stitt EH, Nijemeisland M (2007) Chem Eng Sci 62:4963CrossRefGoogle Scholar
  15. 15.
    Chen GB, Chen CP, Wu CY, Chao YC (2007) Appl Catal A 332:89CrossRefGoogle Scholar
  16. 16.
    Fukahori S, Koga H, Kitaoka T, Nakamura M, Wariishi H (2008) Int J Hydrogen Energy 33:1661CrossRefGoogle Scholar
  17. 17.
    Chen GB, Chao YC, Chen CP (2008) Int J Hydrogen Energy 33:2586CrossRefGoogle Scholar
  18. 18.
    Koga H, Umemura Y, Ishihara H, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2009) Appl Catal B 90:699CrossRefGoogle Scholar
  19. 19.
    Ishihara H, Koga H, Kitaoka T, Wariishi H, Tomoda A, Suzuki R (2010) Chem Eng Sci 65:208CrossRefGoogle Scholar
  20. 20.
    Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Appl Catal A 300:155CrossRefGoogle Scholar
  21. 21.
    Koga H, Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Appl Catal A 309:263CrossRefGoogle Scholar
  22. 22.
    Koga H, Fukahori S, Kitaoka T, Nakamura M, Wariishi H (2008) Chem Eng J 139:408CrossRefGoogle Scholar
  23. 23.
    Koga H, Kitaoka T, Nakamura M, Wariishi H (2009) J Mater Sci 44:5836. doi:10.1007/s10853-009-3823-y CrossRefADSGoogle Scholar
  24. 24.
    Koga H, Umemura Y, Tomoda A, Suzuki R, Kitaoka T (2010) ChemSusChem. doi:10.1002/cssc.200900277
  25. 25.
    Koga H, Kitaoka T, Wariishi H (2008) Chem Commun 5616Google Scholar
  26. 26.
    Koga H, Kitaoka T, Wariishi H (2009) J Mater Chem 19:5244CrossRefGoogle Scholar
  27. 27.
    Pitukmanorom P, Ying JY (2009) Nano Today 4:220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hirotaka Koga
    • 1
  • Hirotake Ishihara
    • 1
  • Takuya Kitaoka
    • 1
  • Akihiko Tomoda
    • 2
  • Ryo Suzuki
    • 2
  • Hiroyuki Wariishi
    • 1
  1. 1.Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan
  2. 2.R & D Division, F. C. C. Co. Ltd.HamamatsuJapan

Personalised recommendations