Advertisement

Journal of Materials Science

, Volume 45, Issue 14, pp 3901–3911 | Cite as

Machining damage analysis of alumina in relation to thermal shock behavior

  • Ana L. Cavalieri
  • Norma Míngolo
  • Analía G. Tomba MartinezEmail author
Article

Abstract

Machining damage of alumina disks with two different finishes, C and F, was analyzed with the aim of explaining the differences in their thermal shock responses. Thermal treatments designed to simulate conditions in thermal shock testing were performed on sets of C and F disks. The damage was quantified by several techniques, including the measurement of residual stresses. The mechanical strength of as-machined disks and thermally treated disks was also determined, including fractographic analysis. A decrease in the residual stresses after thermal treatment was observed in F specimens, as was expected. Conversely, unusual behavior was observed in C disks, showing a tendency to increase the residual stresses when the disks were kept at high temperature. Several factors were discussed to explain this fact. Higher mechanical strength and a decrease in the critical flaw size was observed in thermally treated disks compared to as-machined specimens for both types of finishes.

Keywords

Residual Stress Thermal Treatment Thermal Shock Flaw Size Compressive Residual Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Marshall DB, Evans AG, Khuri Yakub BT, Tien JW, Kino GS (1983) Proc R Soc Lond A 385:461CrossRefADSGoogle Scholar
  2. 2.
    König W, Wemhöner J (1989) Ceram Bull 68:545Google Scholar
  3. 3.
    Alfaro E, Guiheen J, Varner JR (1990) In: Fréchette VD, Varner JR (eds) Fractography of glasses and ceramics. Ceramic transactions, vol 17. The American Ceramic Society, Ohio, p 485Google Scholar
  4. 4.
    Frei H, Grathwohl G (1993) Ceram Int 19:93CrossRefGoogle Scholar
  5. 5.
    Cho S, Huh Y, Yoon K (1994) J Am Ceram Soc 77:2443CrossRefGoogle Scholar
  6. 6.
    Olsson M, Kahlman L, Nyberg B (1995) Am Ceram Soc Bull 74:48Google Scholar
  7. 7.
    Xu HHK, Wei L, Jahanmir S (1996) J Am Ceram Soc 79:1307CrossRefGoogle Scholar
  8. 8.
    Tonshoff HK, Lierse T, Wobker HG (1997) Ceram Ind 15:193Google Scholar
  9. 9.
    Li K, Liao W (1996) J Mater Proc Technol 57:207CrossRefGoogle Scholar
  10. 10.
    Tomba Martinez AG, Cavalieri AL (2000) Mat Res Bull 35:1077CrossRefGoogle Scholar
  11. 11.
    Tomba Martinez AG, Cavalieri AL (2000) J Eur Ceram Soc 20:889CrossRefGoogle Scholar
  12. 12.
    Lange FF, Gupta TK (1970) J Am Ceram Soc 53:54CrossRefGoogle Scholar
  13. 13.
    Gupta TK (1976) J Am Ceram Soc 59:259CrossRefGoogle Scholar
  14. 14.
    Chou IA, Chan H, Harmer MP (1996) J Am Ceram Soc 79:2403CrossRefGoogle Scholar
  15. 15.
    Seidel J, Calussen N, Rödel J (1997) J Eur Ceram Soc 17:727CrossRefGoogle Scholar
  16. 16.
    Leoni M, Scardi P, Sglavo V (1998) J Eur Ceram Soc 18:1663CrossRefGoogle Scholar
  17. 17.
    Pfeiffer W, Hollstein T (1997) J Eur Ceram Soc 17:487CrossRefGoogle Scholar
  18. 18.
    Lutterotti L, Scardi P (1990) J Appl Cryst 23:246CrossRefGoogle Scholar
  19. 19.
    Standard practice for fractography and characterization of fracture origins in advanced ceramics, ASTM-C 1322/96Google Scholar
  20. 20.
    Brinksmeier E, Siemer H (1989) In: International conference on residual stresses (ICRS2) proceedings, Nancy, France, 23–25 November 1989, p 335Google Scholar
  21. 21.
    Watchman JB Jr, Teft WE, Lam DG Jr, Stinchfield RP (1960) J Am Ceram Soc 45:319Google Scholar
  22. 22.
    Tomba Martinez AG, Cavalieri AL (2002) J Am Ceram Soc 85:921Google Scholar
  23. 23.
    Eigenmann B, Scholtes B, Macherauch E (1989) Mater Sci Eng A 118:1CrossRefGoogle Scholar
  24. 24.
    Wu HZ, Roberts SG, Möbus G, Inkson BJ (2003) Acta Mater 51:149CrossRefGoogle Scholar
  25. 25.
    Wu H, Roberts SG, Derby B (2001) Acta Mater 49:507CrossRefGoogle Scholar
  26. 26.
    Choi S, Awaji H (2005) Sci Technol Adv Mater 6:2CrossRefGoogle Scholar
  27. 27.
    Cannon RM, Rhodes WH, Heuer AH (1980) J Am Ceram Soc 63:46CrossRefGoogle Scholar
  28. 28.
    Gitzen WH (1970) Alumina as ceramic material. The American Ceramic Society, OhioGoogle Scholar
  29. 29.
    Munro R (1997) J Am Ceram Soc 80:1919CrossRefGoogle Scholar
  30. 30.
    González ES, Miranda P, Martínez JJM, Guiberteau F, Pajares A (2007) J Eur Ceram Soc 27:3345CrossRefGoogle Scholar
  31. 31.
    Cook RF, Lawn BR, Dabbs TP, Chantikul P (1981) J Am Ceram Soc 64:C121CrossRefGoogle Scholar
  32. 32.
    Lange FF, James MR, Green DJ (1983) J Am Ceram Soc 66:C16Google Scholar
  33. 33.
    Swab JJ, Quinn GD (1995) Report No. 19, ISSN 1016-2186Google Scholar
  34. 34.
    Rice RW (1994) J Am Ceram Soc 77:2232CrossRefGoogle Scholar
  35. 35.
    Augusto Lino UR, Hüber HW (1983) In: Science of ceramics 12, Ceramurgica s.r.l. (Faenza), p 607Google Scholar
  36. 36.
    Samuel R, Chandrasekar S, Farris T, Licht R (1989) J Am Ceram Soc 72:1960CrossRefGoogle Scholar
  37. 37.
    Zhao J, Stearns L, Harmer M, Chan H, Miller G (1993) J Am Ceram Soc 76:503CrossRefGoogle Scholar
  38. 38.
    Tomba Martinez AG, Cavalieri AL (2000) Mater Lett 42:240CrossRefGoogle Scholar
  39. 39.
    Tomba Martinez AG, Cavalieri AL (2000) Mater Sci Eng A 276:76CrossRefGoogle Scholar
  40. 40.
    Tomba Martinez AG, Camerucci MA, Cavalieri AL (2006) J Eur Ceram Soc 26:2527CrossRefGoogle Scholar
  41. 41.
    Xu HHK, Jahanmir S (1995) J Mater Sci 30:2235. doi: 10.1007/BF01184566 CrossRefADSGoogle Scholar
  42. 42.
    Pfeiffer W, Frey T (2006) J Eur Ceram Soc 26:2639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ana L. Cavalieri
    • 1
  • Norma Míngolo
    • 2
  • Analía G. Tomba Martinez
    • 1
    • 3
    Email author
  1. 1.Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)-CONICETMar del PlataArgentina
  2. 2.Centro Atómico Constituyente - CNEASan MartínArgentina
  3. 3.División Cerámicos-INTEMAFac. de Ingeniería, UNMdPMar del PlataArgentina

Personalised recommendations