Advertisement

Journal of Materials Science

, Volume 45, Issue 14, pp 3778–3783 | Cite as

An alternative approach of solid-state reaction to prepare nanocrystalline KNbO3

  • Tingting Su
  • Heng Jiang
  • Hong Gong
  • Yuchun Zhai
Article

Abstract

A simple preparation of KNbO3 powders was proposed by an alternative approach of solid-state reaction. Stoichiometric niobium oxalate and potassium acetate were mixed in water and then dried. It was demonstrated that an ion-exchange reaction occurred with the formation of K[NbO(C2O4)2nH2O intermediate. The single-phase KNbO3 powders were synthesized when K[NbO(C2O4)2nH2O intermediate was calcined between 500 and 800 °C for 3 h. KNbO3 powders obtained at 500 °C are determined as orthorhombic structure with an average particle size of 20–50 nm by X-ray diffraction, scanning electron microscope (SEM), and transmission electron microscopy (TEM) analysis. The morphologies of KNbO3 obtained at different temperatures were observed by SEM and TEM analysis. The average band gap energy is estimated to be 3.16 eV by UV–vis diffuse reflectance spectra.

Keywords

Oxalate Calcination Temperature Nb2O5 Diffuse Reflectance Spectrum Relative Crystallinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84CrossRefPubMedADSGoogle Scholar
  2. 2.
    Pribošič I, Makovec D, Drofenik M (2005) Chem Mater 17:2953CrossRefGoogle Scholar
  3. 3.
    Meng XY (2007) J Appl Phys 101:103506CrossRefADSGoogle Scholar
  4. 4.
    Sastry PU (2002) Solid State Commun 122:41CrossRefADSGoogle Scholar
  5. 5.
    Li B, Hakuta Y, Hayashi H (2005) J Supercrit Fluids 35:254CrossRefGoogle Scholar
  6. 6.
    Lu CH, Lo SY, Lin HC (1998) Mater Lett 34:172CrossRefGoogle Scholar
  7. 7.
    Nagata H, Matsumoto K, Hirosue T, Hiruma Y, Takenaka T (2007) Jpn J Appl Phys 46:7084CrossRefADSGoogle Scholar
  8. 8.
    Wiegel M, Emond MHJ, Stobbe ER, Blasse G (1994) J Phys Chem Solids 55:773CrossRefADSGoogle Scholar
  9. 9.
    Pankratov V, Grigorjeva L, Millers D, Corradi G, Polgàr K (2000) Ferroelectrics 239:241CrossRefGoogle Scholar
  10. 10.
    Ding QP, Yuan YP, Xiong X, Li RP, Huang HB, Li ZS, Yu T, Zou ZG, Yang SG (2008) J Phys Chem C 112:18846Google Scholar
  11. 11.
    Liu JW, Chen G, Li ZH, Zhang ZG (2007) Int J Hydrogen Energy 32:2269CrossRefGoogle Scholar
  12. 12.
    Hayashi H, Hakuta Y, Kurata Y (2004) J Mater Chem 14:2046CrossRefGoogle Scholar
  13. 13.
    Choi J, Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2008) J Mater Chem 18:2371CrossRefGoogle Scholar
  14. 14.
    Tanaka K, Kakimoto K, Ohsato H (2007) J Eur Ceram Soc 27:3591CrossRefGoogle Scholar
  15. 15.
    Nazeri-eshghi A, Kuang AX, Mackenzie JD (1990) J Mater Sci 25:3333. doi: 10.1007/BF00587695 CrossRefADSGoogle Scholar
  16. 16.
    Amini MM, Sacks MD (1991) J Am Ceram Soc 74:53CrossRefGoogle Scholar
  17. 17.
    Amini MM, Mirzaee M (2009) Ceram Int 35:2367CrossRefGoogle Scholar
  18. 18.
    Yogo T, Banno K, Sakamoto W, Hirano S (2003) J Mater Res 18:1679CrossRefADSGoogle Scholar
  19. 19.
    Muthurajan H, Kumar HH, Samuel V, Gupta UN, Ravi V (2008) Ceram Int 34:671CrossRefGoogle Scholar
  20. 20.
    Kim MJ, Matijević E (1992) J Mater Res 7:912CrossRefADSGoogle Scholar
  21. 21.
    Bhattacharyya K, Tyagi AK (2009) J Alloys Compd 470:580CrossRefGoogle Scholar
  22. 22.
    Kakimoto K, Ito T, Ohsato H (2008) Jpn J Appl Phys 47:7669CrossRefADSGoogle Scholar
  23. 23.
    Lin Y, Yang HB, Zhu JF, Wang F, Luo HJ (2008) Mater Manuf Processes 23:796CrossRefGoogle Scholar
  24. 24.
    Wohlrab S, Weiss M, Du H, Kaskel S (2006) Chem Mater 18:4227CrossRefGoogle Scholar
  25. 25.
    Hana XY, Zhang DM, Zhong ZC, Yang FX, Wei N, Zheng KY, Li ZH, Gao YH (2008) J Phys Chem Solids 69:193CrossRefADSGoogle Scholar
  26. 26.
    Ishikawa M, Kadota Y, Takiguchi N, Hosaka H, Morita T (2008) Jpn J Appl Phys 47:7673CrossRefADSGoogle Scholar
  27. 27.
    Liu JF, Li XL, Li YD (2003) J Cryst Growth 247:419CrossRefADSGoogle Scholar
  28. 28.
    Suyal G, Colla E, Gysel R, Cantoni M, Setter N (2004) Nano Lett 4:1339CrossRefADSGoogle Scholar
  29. 29.
    Magrez A, Vasco E, Seo JW, Dieker C, Setter N, Forró L (2006) J Phys Chem B 110:58CrossRefPubMedGoogle Scholar
  30. 30.
    Vasco E, Magrez A, Forro L, Setter N (2005) J Phys Chem B 109:14331CrossRefPubMedGoogle Scholar
  31. 31.
    Goha GKL, Lange FF (2003) J Mater Res 18:338CrossRefADSGoogle Scholar
  32. 32.
    Ishikawa M, Takiguchi N, Hosaka H, Morita T (2008) Jpn J Appl Phys 47:3824CrossRefADSGoogle Scholar
  33. 33.
    Paula AJ, Parra R, Zaghete MA, Varela JA (2008) Mater Lett 62:2581CrossRefGoogle Scholar
  34. 34.
    Lu CH, Lo SY, Wang YL (2002) Mater Lett 55:121CrossRefGoogle Scholar
  35. 35.
    Komatsu R, Adachi K, Ikeda K (2001) Jpn J Appl Phys 40:5657CrossRefADSGoogle Scholar
  36. 36.
    Fang TH, Hsiao YJ, Chang YS, Chang YH (2006) Mater Chem Phys 100:418CrossRefGoogle Scholar
  37. 37.
    Beck K, Seyeda H, Sulkowski U, Rosenkranz A (2007) US Patent 7 241 911, 10 July 2007Google Scholar
  38. 38.
    Nobre MAL, Longo E, Leite ER, Varela JA (1996) Mater Lett 28:215CrossRefGoogle Scholar
  39. 39.
    Kamat MS, Osawa T, DeAngelis RJ, Koyama Y, DeLuca PP (1988) Pharm Res 5(7):426CrossRefPubMedGoogle Scholar
  40. 40.
    Emerson RC, Masato K (2001) Chem Mater 13:1905CrossRefGoogle Scholar
  41. 41.
    Asai T, Camargo ER, Kakihana M, Osada M (2000) J Alloys Compd 309:113CrossRefGoogle Scholar
  42. 42.
    Su TT, Zhai YC, Jiang H, Gong H (2009) J Therm Anal Calorim 98:449CrossRefGoogle Scholar
  43. 43.
    Nakamura T, Suzuki H (1977) US Patent 4 034 396, 5 July 1977Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tingting Su
    • 1
    • 2
  • Heng Jiang
    • 1
  • Hong Gong
    • 1
  • Yuchun Zhai
    • 2
  1. 1.School of Chemistry and Materials ScienceLiaoning Shihua UniversityFushunPeople’s Republic of China
  2. 2.School of Materials Science and MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations