Journal of Materials Science

, Volume 45, Issue 14, pp 3735–3740 | Cite as

Aspect ratio-dependent optical properties of Ni–P/AAO nano-array composite structure

  • Feng-Hua Wang
  • Ya-Fang Tu
  • Jian-Ping Sang
  • Sheng-You Huang
  • Xian-Wu Zou


Using electrochemical deposition, Ni–P nanorod arrays with a series of aspect ratios have been successfully fabricated in the pores of anodic aluminum oxide (AAO) membranes. The aspect ratio of Ni–P nanorods was controlled by the deposition time. The morphologies were analyzed by scanning electron microscopy and transmission electron microscopy. The dependence of the optical absorbance upon the aspect ratio was studied by UV–vis spectra. The results show that the absorbance increases in visible region and decreases rapidly in ultraviolet region as the aspect ratio of nanorods increases, which qualitatively agree with the prediction of Maxwell–Garnett (MG) theory and the simulation based on the Mie scattering theory, respectively. The dependence of photoluminescence emission (PL) spectra upon the aspect ratio is also obtained. These investigations show that the optical properties of nano-array composite structure can be modified by changing the aspect ratio of nanorods.


Aspect Ratio Composite Structure Anodic Aluminum Oxide Optical Absorbance Nanorod Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by FANEDD of China No. 200525, Natural Science Foundation of Hubei Province No.2005ABA027 and Science & Technology Program of Wuhan City No.200970634268.


  1. 1.
    Martin CR (1994) Science 266:1961CrossRefPubMedADSGoogle Scholar
  2. 2.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353CrossRefGoogle Scholar
  3. 3.
    Cornelius TW, Brötz J, Chtanko N, Dobrev D, Miehe G, Neumann R, Toimil-Molares ME (2005) Nanotechnology 16:S246CrossRefADSGoogle Scholar
  4. 4.
    Liu J, Duan JL, Toimil-Molares ME, Karim S, Cornelius TW, Dobrev D, Yao HJ, Neumann R (2006) Nanotechnology 17:1922CrossRefADSGoogle Scholar
  5. 5.
    Karim S, Toimil-Molares ME, Balogh AG, Ensinger W, Cornelius TW, Khan EU, Neumann R (2006) Nanotechnology 17:5954CrossRefADSGoogle Scholar
  6. 6.
    Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Science 261:1316CrossRefPubMedADSGoogle Scholar
  7. 7.
    Yi G, Schwarzacher W (1999) Appl Phys Lett 74:1746CrossRefADSGoogle Scholar
  8. 8.
    Molares EMT, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU, Vetter J (2001) Adv Mater 13:62CrossRefGoogle Scholar
  9. 9.
    Xu DS, Xu YJ, Chen DP, Guo GL, Gui LL, Tang YQ (2000) Adv Mater 12:520CrossRefGoogle Scholar
  10. 10.
    Sapp SA, Lakshmi BB, Martin CR (1999) Adv Mater 11:402CrossRefGoogle Scholar
  11. 11.
    Preston CK, Moskovits M (1993) J Phys Chem 97:8495CrossRefGoogle Scholar
  12. 12.
    Foss CA Jr, Hornyak GL, Stockert JA, Martin CR (1994) J Phys Chem 98:2963CrossRefGoogle Scholar
  13. 13.
    Foss CA Jr, Hornyak GL, Stockert JA, Martin CR (1993) In: Proceedings of materials research society symposium on nanometals, vol 286. Boston, MA, p 431Google Scholar
  14. 14.
    Hornyak GL, Patrissi CJ, Martin CR (1997) J Phys Chem B 101:1548CrossRefGoogle Scholar
  15. 15.
    Al-Rawashdeh N, Foss CA Jr (1997) Nanostruct Mater 9:383CrossRefGoogle Scholar
  16. 16.
    Brenner A, Riddell GE (1946) J Res Natl Bur Stand 37:31Google Scholar
  17. 17.
    Chiriac H, Moga AE, Urse M, Paduraru I, Lupu N (2004) J Magn Magn Mater 272–276:1678CrossRefGoogle Scholar
  18. 18.
    Feldheim DL, Foss CA Jr (2002) Metal nanoparticles: synthesis, characterization and application. Marcel Dekker, New YorkGoogle Scholar
  19. 19.
    Wang QQ, Han JB, Guo DL, Xiao S, Han YB, Gong HM, Zou XW (2007) Nano Lett 7:723CrossRefPubMedADSGoogle Scholar
  20. 20.
    Zong RL, Zhou J, Li Q, Du B, Li Q, Fu M, Qi XW, Li LT (2004) J Phys Chem B 108:16713CrossRefGoogle Scholar
  21. 21.
    Chen HM, Hsin CF, Liu RS, Hu SF, Huang CY (2007) J Electrochem Soc 154:k11CrossRefGoogle Scholar
  22. 22.
    Guo DL, Fan LX, Sang JP, Liu YF, Huang SY, Zou XW (2007) Nanotechnology 18:405304 (4 pp)CrossRefGoogle Scholar
  23. 23.
    Masuda H, Fukuda F (1995) Science 268:1466CrossRefPubMedADSGoogle Scholar
  24. 24.
    Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Appl Phys Lett 79:1039CrossRefADSGoogle Scholar
  25. 25.
    Duan JL, Liu J, Yao HJ, Mo D, Hou MD, Sun YM, Chen YF, Zhang L (2008) Mater Sci Eng B 147:57CrossRefGoogle Scholar
  26. 26.
    Zong RL, Zhou J, Li B, Fu M, Shi SK, Li LT (2005) J Chem Phys 123:094710-1-094710-5Google Scholar
  27. 27.
    Tang HJ, Wu FQ, Zhang S (2006) Appl Phys A 85:29CrossRefADSGoogle Scholar
  28. 28.
    Gao TR, Chen ZY, Peng Y, Li FS (2002) Chin Phys 11:1307CrossRefADSGoogle Scholar
  29. 29.
    Locharoenrat K, Sano H, Mizutani G (2007) Sci Technol Adv Mater 8:277CrossRefGoogle Scholar
  30. 30.
    Halperin WP (1986) Rev Mod Phys 58:533CrossRefADSGoogle Scholar
  31. 31.
    Aspnes DE (1982) Thin Solid Films 89:249CrossRefADSGoogle Scholar
  32. 32.
    Van de Huist HC (1981) Light scatting by small particles. Dover, New YorkGoogle Scholar
  33. 33.
    Foss CA Jr, Tierney MJ, Martin CR (1992) J Phys Chem 96:9001CrossRefGoogle Scholar
  34. 34.
    Al-Rawashdeh NAF, Sandrock ML, Seugling CJ, Foss CA Jr (1998) J Phys Chem B 102:361CrossRefGoogle Scholar
  35. 35.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  36. 36.
    Barber PW, Hill SC (1990) Light scattering by particles: computational methods. World Scientific, River Edge, NJGoogle Scholar
  37. 37.
    Asano S (1979) Appl Opt 18:712CrossRefPubMedADSGoogle Scholar
  38. 38.
    Asano S, Yamamoto G (1975) Appl Opt 14:29PubMedADSGoogle Scholar
  39. 39.
    Varadan VK, Varadan VV (1980) Acoustic, electromagnetic and elastic wave scattering: focus on the T-matrix approach. Pergamon, New YorkGoogle Scholar
  40. 40.
    Guo DL, Fan LX, Wang FH, Huang SY, Zou XW (2008) J Phys Chem C 112:17952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Feng-Hua Wang
    • 1
  • Ya-Fang Tu
    • 2
  • Jian-Ping Sang
    • 1
    • 2
  • Sheng-You Huang
    • 1
  • Xian-Wu Zou
    • 1
  1. 1.Department of PhysicsWuhan UniversityWuhanChina
  2. 2.Department of PhysicsJianghan UniversityWuhanChina

Personalised recommendations