Advertisement

Journal of Materials Science

, Volume 45, Issue 16, pp 4271–4275 | Cite as

Contact angles by the solid-phase grain boundary wetting (coverage) in the Co–Cu system

  • B. B. StraumalEmail author
  • O. A. Kogtenkova
  • A. B. Straumal
  • Yu. O. Kuchyeyev
  • B. Baretzky
EUROMAT 2009

Abstract

The microstructure of binary Co–13.6 wt% Cu and Cu–4.9 wt% Co alloys after long anneals (930–2,100 h) was studied between 880 and 1,085 °C. The contact angles between (Co) particles and (Cu)/(Cu) grain boundaries (GBs) in the Cu–4.9 wt% Co alloy are between 50° and 70°. In the Co–13.6 wt% Cu alloy, the transition from incomplete to complete wetting (coverage) of (Co)/(Co) GBs by the second solid phase (Cu) has been observed. The portion of completely wetted (Co)/(Co) GBs increases with increasing temperature beginning from T wss = 970 ± 10 °C and reaches a maximum of 15% at 1,040 °C. This temperature is very close to the Curie point in the Co–Cu alloys (1,050 °C). Above 1,040 °C, the amount of completely wetted (Co)/(Co) GBs decreases with increasing temperature and reaches zero at T wsf = 1,075 ± 5 °C. Such reversible transition from incomplete to complete wetting (coverage) of a GB by a second solid phase is observed for the first time.

Keywords

Contact Angle Interphase Boundary Curie Point Complete Wetting Ingot Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors thank the Russian Foundation for Basic Research (contracts 09-03-92481 and 09-03-00784), the Russian Federal Agency for Science and Innovations (contract 02.740.11.5081) and Israel Ministry of Science (project 3-5790) for the financial support. Authors cordially thank Prof. E. Rabkin, Dr. A. Mazilkin and Dr. S. Protasova for stimulating discussions, Mr. A. Nekrasov for the help with SEM and EPMA measurements.

References

  1. 1.
    Passerone A, Eustathopoulos N, Desré P (1977) J Less-Common Met 52:37CrossRefGoogle Scholar
  2. 2.
    Passerone A, Sangiorgi R, Eustathopoulos N (1982) Scr Metall 16:547CrossRefGoogle Scholar
  3. 3.
    Eustathopoulos N (1983) Int Met Rev 28:189Google Scholar
  4. 4.
    Straumal BB (2003) Grain boundary phase transitions. Nauka publishers, Moscow in RussianGoogle Scholar
  5. 5.
    Straumal B, Molodov D, Gust W (1995) Interface Sci 3:127CrossRefGoogle Scholar
  6. 6.
    López GA, Mittemeijer EJ, Straumal BB (2004) Acta Mater 52:4537CrossRefGoogle Scholar
  7. 7.
    Straumal BB, Baretzky B, Kogtenkova OA, Straumal AB, Sidorenko AS (2010) J Mater Sci 45:2057. doi: 10.1007/s10853-009-4014-6 CrossRefADSGoogle Scholar
  8. 8.
    Errahmani H, Berrada A, Schmerber G, Dinia A (2002) J Magn Magn Mater 238:145CrossRefADSGoogle Scholar
  9. 9.
    Kolbe M, Brillo J, Egry I, Herlach D, Ratke L, Chatain D, Tinet N, Antion C, Battezzati L, Curiotto S, Johnson E, Pryds N (2006) Microgravity Sci Technol 18:174CrossRefGoogle Scholar
  10. 10.
    Curiotto S, Chatain D (2009) Scr Mater 60:40CrossRefGoogle Scholar
  11. 11.
    Massalski TB (ed) (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials Park, OHGoogle Scholar
  12. 12.
    Bernardini J, Monchoux J-P, Chatain D, Rabkin E (2002) J Phys IV France 12:Pr8CrossRefGoogle Scholar
  13. 13.
    Cahn JW (1977) J Chem Phys 66:3667CrossRefADSGoogle Scholar
  14. 14.
    Ebner C, Saam WF (1977) Phys Rev Lett 38:1486CrossRefADSGoogle Scholar
  15. 15.
    Cahn JW (2000) Physica A 279:195CrossRefADSGoogle Scholar
  16. 16.
    Wynblatt P, Saul A, Chatain D (1998) Acta Mater 46:2337CrossRefGoogle Scholar
  17. 17.
    Wynblatt P, Chatain D (2008) Mater Sci Eng A 495:119CrossRefGoogle Scholar
  18. 18.
    Bishop CM, Tang M, Cannon RM, Carter WC (2006) Mater Sci Eng A 422:102CrossRefGoogle Scholar
  19. 19.
    Straumal BB, Gornakova AS, Kogtenkova OA, Protasova SG, Sursaeva VG, Baretzky B (2008) Phys Rev B 78:054202CrossRefADSGoogle Scholar
  20. 20.
    Luo J (2008) Curr Opin Solid State Mater Sci 12:81CrossRefGoogle Scholar
  21. 21.
    Gupta VK, Yoon DH, Meyer HM et al (2007) Acta Mater 55:3131CrossRefGoogle Scholar
  22. 22.
    Luo J, Gupta VK, Yoon DH et al (2005) Appl Phys Lett 87:231902CrossRefADSGoogle Scholar
  23. 23.
    Luo J, Chiang Y-M (2008) Ann Rev Mater Res 38:227CrossRefADSGoogle Scholar
  24. 24.
    Luo J, Dillon SJ, Harmer MP (2009) Microsc Today 17:22CrossRefGoogle Scholar
  25. 25.
    Cho J, Wang CM, Chan HM, Rickman JM, Harmer MP (2002) J Mater Sci 37:59. doi: 10.1023/A:1013185506017 CrossRefGoogle Scholar
  26. 26.
    Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Acta Mater 55:6208CrossRefGoogle Scholar
  27. 27.
    Dillon SJ, Harmer MP (2007) Acta Mater 55:5247CrossRefGoogle Scholar
  28. 28.
    Dillon SJ, Harmer MP (2008) J Eur Ceram Soc 28:1485CrossRefGoogle Scholar
  29. 29.
    Baram M, Kaplan WD (2006) J Mater Sci 41:7775. doi: 10.1007/s10853-006-0897-7 CrossRefADSGoogle Scholar
  30. 30.
    Sadan H, Kaplan WD (2006) J Mater Sci 41:5099. doi: 10.1007/s10853-006-0437-5 CrossRefADSGoogle Scholar
  31. 31.
    Levi G, Kaplan WD (2006) J Mater Sci 41:817. doi: 10.1007/s10853-006-6565-0 CrossRefADSGoogle Scholar
  32. 32.
    Rabkin EI, Semenov VN, Shvindlerman LS et al (1991) Acta Metall Mater 39:627CrossRefGoogle Scholar
  33. 33.
    Noskovich OI, Rabkin EI, Semenov VN et al (1991) Acta Metall Mater 39:3091CrossRefGoogle Scholar
  34. 34.
    Straumal BB, Noskovich OI, Semenov VN et al (1992) Acta Metall Mater 40:795CrossRefGoogle Scholar
  35. 35.
    Straumal B, Rabkin E, Lojkowski W et al (1997) Acta Mater 45:1931CrossRefGoogle Scholar
  36. 36.
    Straumal BB, Mazilkin AA, Kogtenkova OA et al (2007) Philos Mag Lett 87:423CrossRefADSGoogle Scholar
  37. 37.
    Straumal B, Valiev R, Kogtenkova O et al (2008) Acta Mater 56:6123CrossRefGoogle Scholar
  38. 38.
    Divinski SV, Lohmann M, Herzig Chr et al (2005) Phys Rev B 71:104104CrossRefADSGoogle Scholar
  39. 39.
    Chang L-S, Rabkin E, Straumal BB et al (1999) Acta Mater 47:4041CrossRefGoogle Scholar
  40. 40.
    Straumal BB, Polyakov SA, Chang L-S et al (2007) Int J Mater Res 98:451Google Scholar
  41. 41.
    Straumal B, Prokofjev SI, Chang L-S et al (2001) Defects Diffus Forum 194:1343CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • B. B. Straumal
    • 1
    • 2
    Email author
  • O. A. Kogtenkova
    • 1
  • A. B. Straumal
    • 1
    • 3
  • Yu. O. Kuchyeyev
    • 1
    • 2
    • 3
  • B. Baretzky
    • 4
  1. 1.Institute of Solid State Physics Russian Academy of SciencesChernogolovkaRussia
  2. 2.Max-Planck Institut für MetallforschungStuttgartGermany
  3. 3.National University of Research and Technology “MISiS”MoscowRussia
  4. 4.Karlsruhe Institute for Technology (KIT), Institute for NanotechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations