Journal of Materials Science

, Volume 45, Issue 12, pp 3344–3349 | Cite as

On the free volume kinetics during isochronal structural relaxation of Pd-based metallic glass: effect of temperature and deformation

  • K. Hajlaoui
  • M. A. Yousfi
  • Z. Tourki
  • G. Vaughan
  • A. R. Yavari


Free volume changes of amorphous Pd42.5Cu30Ni7.5P20 due to structural relaxation under isochronal heat treatments have been quantified using in situ synchrotron X-ray diffraction measurements. The analysis of the first diffraction peak position during the annealing process has allowed us to follow the free volume change during relaxation. The data obtained were successfully fitted to relaxation equations based on free volume model (FVM) and the drawn conclusion is that the FVM remain a useful tool for describing the relaxation phenomena in metallic glasses well below glass transition. The effect of deformation and temperature on kinetics of structural relaxation of the amorphous structure has been quantitatively investigated.


Free Volume Metallic Glass Structural Relaxation Glassy Alloy Excess Free Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



K.H. gladly acknowledges a European Marie Curie Ph.D. fellowship in the frame-work of the RTN Network “Ductile BMG Composites” coordinated by ARY.


  1. 1.
    Khonik VA, Kosilov AT, Mikhailov VA, Sviridov VV (1998) Acta Mater 46:3399CrossRefGoogle Scholar
  2. 2.
    Spaepen F (1981) In: Poirier JJ, Kleman M (eds) Physics of defects, Les Houches Lectures XXXV. North Holland, Amsterdam, p 135Google Scholar
  3. 3.
    Waniuk TA, Busch R, Masuhr A, Johnson WL (1998) Acta Mater 46:5229–5236CrossRefGoogle Scholar
  4. 4.
    Yokoyama Y, Ishikawa T, Okada JT, Watanabe Y, Nanao S, Inoue A (2009) J Non-Cryst Solids 355:317CrossRefGoogle Scholar
  5. 5.
    Russew K, Sommer F (2003) J Non-Cryst Solids 319:289CrossRefADSGoogle Scholar
  6. 6.
    Yokoyama Y, Yamasaki T, Liaw PK, Inoue A (2008) Acta Mater 56:6097CrossRefGoogle Scholar
  7. 7.
    Greer AL (1984) J Non-Cryst Solids 61–62:737CrossRefGoogle Scholar
  8. 8.
    Yokoyama Y, Akeno Y, Yamasaki T, Liaw PK, Buchanan RA, Inoue A (2005) Mater Trans 46:2755CrossRefGoogle Scholar
  9. 9.
    Yoshida N, Fujita K, Yokoyama Y, Kimura H, Inoue A (2007) J Jpn Inst Met 71:730CrossRefGoogle Scholar
  10. 10.
    Yokoyama Y, Yamasaki T, Nishijima N, Inoue A (2007) Mater Trans 48:1276CrossRefGoogle Scholar
  11. 11.
    Ishii A, Hori F, Iwase A, Fukumoto Y et al (2008) Mater Trans JIM 49:1975CrossRefGoogle Scholar
  12. 12.
    Inoue A (1998) Materials science foundation 4. TransTech, SwitzerlandGoogle Scholar
  13. 13.
    Nagel C, Ratzke K, Schmidtke E, Wolff J, Geyer U, Faupel F (2000) Phys Rev B 57:10225Google Scholar
  14. 14.
    Lu IR, Gorler GP, Fecht HJ, Willnecker R (2000) J Non-Cryst Solids 274:294CrossRefADSGoogle Scholar
  15. 15.
    Inoue A, Nishiyama N, Matsuda T (19961) Mater Trans JIM 37:181Google Scholar
  16. 16.
    Uriarte JL (2004) Les Verres Metalliques Massif. PhD Thesis, Institut National Polytechnique de GrenobleGoogle Scholar
  17. 17.
    Li N, Liu L, Zhang M (2009) J Mater Sci 44:3072. doi: 10.1007/s10853-009-3407-x CrossRefADSGoogle Scholar
  18. 18.
    ESRF Beamline ID11,
  19. 19.
    Cromer DT, Mann JB (1967) J Chem Phys 47:1892CrossRefADSGoogle Scholar
  20. 20.
    Waseda Y (1980) The structure of non-crystalline materials. McGraw-Hill Inc., New YorkGoogle Scholar
  21. 21.
    Ibers JA, Hamilton WC (eds) (1974) International tables for X-ray crystallography, vol IV. Birmingham, Kynoch Press (present distributor Kluwer Academic Publishers, Dordrecht), p 148Google Scholar
  22. 22.
    Cromer DT, Liberman DL (1970) J Chem Phys 53:1891CrossRefADSGoogle Scholar
  23. 23.
    Hajlaoui K, Benameur T, Vaughan G, Yavari AR (2004) Scripta Mater 51:843CrossRefGoogle Scholar
  24. 24.
    Yavari AR, Le Moulec A, Inoue A, Nishiyama N et al (2005) Acta Mater 53:1611CrossRefGoogle Scholar
  25. 25.
    Yavari AR, Inoue A, Botta WJ, Kvick A (2001) Scripta Mater 44:1239CrossRefGoogle Scholar
  26. 26.
    Yavari AR, LeMoulec A, Inoue A, Botta WJ, Vaughan G, Kvick A (2001) Mater Sci Eng A 34:304Google Scholar
  27. 27.
    Louzguine DV, Yavari AR, Ota K, Vaughan G, Inoue A (2005) J Non-Cryst Solids 351:1639CrossRefADSGoogle Scholar
  28. 28.
    Chen HS (1978) J Appl Phys 49:3289CrossRefADSGoogle Scholar
  29. 29.
    Taub AI, Spaepen F (1980) Acta Mater 28:1781CrossRefGoogle Scholar
  30. 30.
    Li Jing, Spaepen F, Hufnagel TC (2002) Philos Mag A 82:2623ADSGoogle Scholar
  31. 31.
    Li Jing, Wang ZL, Hufnagel TC (2002) Phys Rev B 65:144201CrossRefADSGoogle Scholar
  32. 32.
    Wright WJ, Hufnagel TC, Nix WD (2003) J Appl Phys 93:3CrossRefGoogle Scholar
  33. 33.
    Van Den Beukel A, Radelaar S (1983) Acta Mater 31:419CrossRefGoogle Scholar
  34. 34.
    van den Beukel A, Sietsma J (1990) Acta Metall Mater 38:383CrossRefGoogle Scholar
  35. 35.
    Tsao SS, Spapen F (1985) Acta Mater 33:881CrossRefGoogle Scholar
  36. 36.
    Volkert CA, Spaepen F (1989) Acta Mater 37:1355CrossRefGoogle Scholar
  37. 37.
    Turnbull D, Cohen MH (1961) J Chem Phys 34:120CrossRefADSGoogle Scholar
  38. 38.
    Duine PA, Sietsma J, Van Den Beukel A (1992) Acta Mater 40:743CrossRefGoogle Scholar
  39. 39.
    Haruyama O, Tando M, Kimura HM, Nishiyama N, Inoue A (2002) J Non-Cryst Solids 603:312Google Scholar
  40. 40.
    Kokmeijer E, Huizer E, Thijsse BJ, Van den Beukel A (1988) Phys Status Solidi A 105:235CrossRefADSGoogle Scholar
  41. 41.
    Fritsh G, Shulte A, Wohlfart J, Schuster J, Lüscher E (1988) J Less-Common Metals 145:339CrossRefGoogle Scholar
  42. 42.
    Sietsma J, Baricco M (1991) Mater Sci Eng A 133:518CrossRefGoogle Scholar
  43. 43.
    Kelton KF, Spaepen F (1984) Phys Rev B 30:5516CrossRefADSGoogle Scholar
  44. 44.
    Mattern N, Sakowski J, Kühn U, Vinzelberg H, Eckert J (2004) J Non-Cryst Solids 345–346:758CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • K. Hajlaoui
    • 1
    • 2
    • 3
  • M. A. Yousfi
    • 4
  • Z. Tourki
    • 4
  • G. Vaughan
    • 5
  • A. R. Yavari
    • 1
  1. 1.SIMaP-LTPCM, Institut National Polytechnique de GrenobleSaint Martin d’HeresFrance
  2. 2.LGM-MA05, ENIMMonastirTunisia
  3. 3.Ecole Nationale d’Ingénieurs de SousseBabJdidTunisia
  4. 4.LMMP LAB-STI03Université de Tunis, ESSTTTunisTunsia
  5. 5.European Synchrotron Radiation Facilities (ESRF)GrenobleFrance

Personalised recommendations