Journal of Materials Science

, Volume 45, Issue 12, pp 3242–3246 | Cite as

Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity

  • LiangFa Hu
  • Chang-An WangEmail author
  • Yong Huang


Porous yttria-stabilized zirconia (ZrO2-8 mol% Y2O3, YSZ) ceramics with ultra-low thermal conductivity (as low as 0.06 W/mK) could be fabricated by tert-butyl alcohol (TBA)-based gel-casting process with low solid loadings of 10 and 15 vol%. High porosity (52–76%) and fine pores with average pore size of 0.7–1.8 μm formed after sintering at 1350–1550 °C. These air-containing pores were believed to affect the through-thickness heat transfer propagation, resulting in low thermal conductivity. The thermal conductivity of porous YSZ ceramics with different porosities fits well with computed values derived from Effective Medium Theory (EMT).


Thermal Conductivity Compressive Strength Solid Loading Zirconium Oxychloride Experimental Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant No: 90816019), the Natural High Technology Research and Development Program of China (“863” Program, Grant No: 2007AA03Z435), and State Key Development Program of Basic Research of China (“973” program, Grant No: 2006CB605207-2).


  1. 1.
    Ravichandran KS, An K, Dutton RE, Semiatin SL (1999) J Am Ceram Soc 82(3):673CrossRefGoogle Scholar
  2. 2.
    Garrido LB, Albano MP, Plucknett KP, Genova L (2009) J Mater Proc Tech 209:590CrossRefGoogle Scholar
  3. 3.
    Sakka Y, Tang F, Fudouzi H, Uchikoshi T (2005) Sci Tech Adv Mater 6:915CrossRefGoogle Scholar
  4. 4.
    Gain AK, Song HY, Lee BT (2006) Scr Mater 54:2081CrossRefGoogle Scholar
  5. 5.
    Jun IK, Koh YH, Kim HE (2006) Mater Lett 60:878CrossRefGoogle Scholar
  6. 6.
    Hoh YH, Sun JJ, Kim HE (2007) Mater Lett 61:1283CrossRefGoogle Scholar
  7. 7.
    Boaro M, Vohs JM, Gorte RJ (2003) J Am Ceram Soc 86(3):395CrossRefGoogle Scholar
  8. 8.
    Rambo CR, Cao J, Sieber H (2004) Mater Chem Phys 87:345CrossRefGoogle Scholar
  9. 9.
    Ryshkewitch E (1953) J Am Ceram Soc 36:65CrossRefGoogle Scholar
  10. 10.
    Gu YF, Liu XQ, Meng GY, Peng DK (1999) Ceram Int 25:705CrossRefGoogle Scholar
  11. 11.
    Hamling BH, Schaffer PC (1972) Am Ceram Soc Bull 51(4):426Google Scholar
  12. 12.
    Hamling HC, Hamling BH (1984) Am Ceram Soc Bull 63(8):1016Google Scholar
  13. 13.
    Claussen N, Ruhle M, Heuer A (1983) Science and technology of zirconia II. The American Ceramic Society, Inc., ColumbusGoogle Scholar
  14. 14.
    Nait-Ali B, Haberko K, Vesteghem H, Absi J, Smith DS (2006) J Eur Ceram Soc 26:3567CrossRefGoogle Scholar
  15. 15.
    Chen RF, Huang Y, Wang CA, Qi J (2007) J Am Ceram Soc 90(11):3424CrossRefGoogle Scholar
  16. 16.
    Hashin Z, Shtrikman S (1962) J Appl Phys 33:3125zbMATHCrossRefADSGoogle Scholar
  17. 17.
    Cao XQ, Vasseh R, Stoever D (2004) J Eur Ceram Soc 24:1CrossRefGoogle Scholar
  18. 18.
    Weast RC (1974) Handbook of chemistry and physics. CRC Press, Cleveland, OHGoogle Scholar
  19. 19.
    James KC, Simon JL, David JT, Andrew CC (2005) Int J Heat Mass Transf 48:2150CrossRefzbMATHGoogle Scholar
  20. 20.
    Landauer R (1952) J Appl Phys 23:779CrossRefADSGoogle Scholar
  21. 21.
    Nicholls JR, Lawsona KJ, Johnstoneb A, Rickerbyb DS (2002) Surf Coat Technol 151:383CrossRefGoogle Scholar
  22. 22.
    Matsumoto M, Yamaguchi N, Matsubara H (2004) Scr Mater 50:867CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, State Key Lab of New Ceramics and Fine ProcessingTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations