Journal of Materials Science

, Volume 45, Issue 18, pp 4906–4911 | Cite as

High-density gas aggregation nanoparticle gun applied to the production of SmCo clusters

  • G. T. LandiEmail author
  • A. D. Santos
ICAM 2009


We describe in this article the application of a high-density gas aggregation nanoparticle gun to the production and characterization of high anisotropy SmCo nanoparticles. We give a detailed description of the simple but efficient experimental apparatus with a focus on the microscopic processes of the gas aggregation technique. Using high values of gas flux (~45 sccm) we are able to operate in regimes of high collimation of material. In this regime, as we explain in terms of a phenomenological model, the power applied to the sputtering target becomes the main variable to change the size of the clusters. Also presented are the morphological, structural, and magnetic characterizations of SmCo nanoparticles produced using 10 and 50 W of sputtering power. These values resulted in mean sizes of ~12 and ~20 nm. Significant differences are seen in the structural and magnetic properties of the samples with the 50 W sample showing a largely enhanced crystalline structure and magnetic anisotropy.


FePt Atomic Vapor Condensation Chamber High Collimation Multilayer Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Brazilian funding agencies, Fundação de Ampáro a Pesquisa do Estado de São Paulo (FAPESP), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors thank Professor M.C. Fantini for the x ray diffraction measurements, and the Centro de Ciência e Tecnologia dos Materiais (CCTM-IPEN) for the TEM images.


  1. 1.
    de Heer WA (1993) Rev Mod Phys 65:611CrossRefADSGoogle Scholar
  2. 2.
    Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE, Parker FT, Hütten A, Thomas G (1992) Phys Rev Lett 68:3745CrossRefPubMedADSGoogle Scholar
  3. 3.
    Bansmann J, Baker SH, Binns C, Blackman JA, Bucher J-P, Dorantes-Dávila J, Dupuis V, Favre L, Kechrakos D, Kleibert A, Meiwes-Broer K-H, Pastor GM, Perez A, Toulemonde O, Trohidou KN, Tuaillon J, Xie Y (2005) Surf Sci Rep 56:189CrossRefADSGoogle Scholar
  4. 4.
    Gabardella P, Rusponi S, Veronese M, Dhesi SS, Grazioli C, Dallmeyer A, Cabria I, Zeller R, Dederichs PH, Kern K, Carbone C, Brune H (2003) Science 300:1130CrossRefADSGoogle Scholar
  5. 5.
    Iakaubovskii K, Mitsuishi K (2008) Phys Rev B 78:064105CrossRefADSGoogle Scholar
  6. 6.
    Hyeon T (2003) Chem Commun 8:927CrossRefGoogle Scholar
  7. 7.
    Mühlbach J, Recknagel E, Sattler K (1980) Surf Sci 106:188CrossRefGoogle Scholar
  8. 8.
    Chinnasamy CN, HUang JY, Lewis LH, Latha B, Vottoria C, Harris VG (2008) Appl Phys Lett 93:032505CrossRefADSGoogle Scholar
  9. 9.
    Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989CrossRefPubMedADSGoogle Scholar
  10. 10.
    Moser A, Takano K, Margulies DT, Albrecht M, Sonobe Y, Ikeda Y, Sun S, Fullerton EE (2002) J Phys D Appl Phys 35:157CrossRefADSGoogle Scholar
  11. 11.
    Kneller EF (1991) IEE Trans Mag 27:3588CrossRefADSGoogle Scholar
  12. 12.
    Baker SH, Thornton SC, Edmonds KW, Maher MJ, Norris C, Binns C (2000) Rev Sci Inst 71:3178CrossRefADSGoogle Scholar
  13. 13.
    Stirling AJ, Westwood WD (1971) J Phys D Appl Phys 4:246CrossRefADSGoogle Scholar
  14. 14.
    Landi GT, Romero SA, Santos AD (2009) Rev Sci Instrum (submitted)Google Scholar
  15. 15.
    JCPDS (1995) International centre of diffraction data, pp 35–1400Google Scholar
  16. 16.
    JCPDS (1995) International centre of diffraction data, pp 35–1368Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratório de Materiais Magnéticos, Departamento de Física dos Materiais e MecânicaInstituto de Física da Universidade de São PauloSão PauloBrazil

Personalised recommendations