Journal of Materials Science

, Volume 45, Issue 10, pp 2543–2552 | Cite as

DNA self-assembly: prospectus and its future application

Review

Abstract

The field of DNA nanotechnology has grown rapidly in the past 10 years, with many baby steps and exciting breakthroughs. DNA has recently been emerged as a versatile material for constructing artificial molecular structures and strategy which has excellent intrinsic characteristics, including programmability, self-organization, molecular recognition, and molecular-scale structuring properties, makes it an attractive nanoscale building material. Excitingly, DNA can be considered as a natural candidate for molecular self-assembly. In this review, we have focused on the methods for DNA self assembling patterns within the molecular fabric of DNA lattices.

Notes

Acknowledgement

This work was supported by Kyungwon University Research Fund in 2009.

References

  1. 1.
    Eshaghian-Wilner M (ed) (2009) Inspired and nanoscale integrated computing. Wiley, New YorkGoogle Scholar
  2. 2.
    LaBean TH, Winfree E, Reif JH (1999) Discrete Math Theoret Comput Sci 54:123MathSciNetGoogle Scholar
  3. 3.
    Jonoska N, Rozenberg G (eds) (2006) Nanotechnology: science and computation. Springer, BerlinMATHGoogle Scholar
  4. 4.
    Seeman NC (2004) Sci Am 290:64CrossRefPubMedGoogle Scholar
  5. 5.
    Seeman NC (1982) J Theor Biol 99:237CrossRefPubMedGoogle Scholar
  6. 6.
    Kallenbach NR, Ma RI, Seeman NC (1983) Nature 305:829CrossRefADSGoogle Scholar
  7. 7.
    Seeman NC, Wang H, Yang X, Liu F, Mao C, Sun W, Wenzler L, Shen Z, Sha R, Yan H, Wong MH, Ardyen PS, Liu B, Qiu H, Li X, Qi J, Du SM, Zhang Y, Mueller JE, Fu TJ, Wang Y, Chen J (1998) Nanotechnology 9:257CrossRefADSGoogle Scholar
  8. 8.
    Mao C, Sun W, Seeman NC (1999) J Am Chem Soc 121:5437CrossRefGoogle Scholar
  9. 9.
    Fu TJ, Seeman NC (1993) Biochemistry 32:3211CrossRefPubMedGoogle Scholar
  10. 10.
    Sha R, Liu F, Millar DP, Seeman NC (2000) Chem Biol 7:743CrossRefPubMedGoogle Scholar
  11. 11.
    Mao C, Sun W, Shen Z, Seeman NC (1999) Nature 397:144CrossRefPubMedADSGoogle Scholar
  12. 12.
    Liu F, Sha R, Seeman NC (1999) J Am Chem Soc 121:917CrossRefGoogle Scholar
  13. 13.
    Seeman NC (2001) Nano Lett 1:22CrossRefADSGoogle Scholar
  14. 14.
    Zhang X, Yan H, Shen Z, Seeman NC (2002) J Am Chem Soc 124:12940CrossRefPubMedGoogle Scholar
  15. 15.
    Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) Science 301:1882CrossRefPubMedADSGoogle Scholar
  16. 16.
    Liao S, Seeman NC (2004) Science 306:2072CrossRefPubMedADSGoogle Scholar
  17. 17.
    Yang X, Wenzler LA, Qi J, Li X, Seeman NC (1998) J Am Chem Soc 120(38):9779CrossRefGoogle Scholar
  18. 18.
    Mao C, LaBean TH, Reif JH, Seeman NC (2000) Nature 407:493CrossRefPubMedADSGoogle Scholar
  19. 19.
    Ding BQ, Sha RJ, Seeman NC (2004) J Am Chem Soc 126:10230CrossRefPubMedGoogle Scholar
  20. 20.
    Liu D, Wang M, Deng Z, Walulu R, Mao C (2004) J Am Chem Soc 126:2324CrossRefPubMedGoogle Scholar
  21. 21.
    Reishus D, Shaw B, Brun Y, Chelyapov N, Adleman L (2005) J Am Chem Soc 127:17590CrossRefPubMedGoogle Scholar
  22. 22.
    Ke Y, Liu Y, Zhang J, Yan H (2006) J Am Chem Soc 128:4414CrossRefPubMedGoogle Scholar
  23. 23.
    Wei B, Mi Y (2005) Biomacromolecules 6:2528CrossRefPubMedGoogle Scholar
  24. 24.
    Mathieu F, Liao S, Kopatsch J, Wang T, Mao C, Seeman NC (2005) Nano Lett 5:661CrossRefPubMedADSGoogle Scholar
  25. 25.
    Li H, Carter JD, LaBean TH (2009) Mater Today 12:24CrossRefGoogle Scholar
  26. 26.
    Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H (2009) Science 323:112CrossRefPubMedADSGoogle Scholar
  27. 27.
    LaBean TH (2009) ACS national meeting, Salt Lake City, UtahGoogle Scholar
  28. 28.
    Simmel FC (2008) Angew Chem Int Ed 47:5884CrossRefGoogle Scholar
  29. 29.
    Le JD, Pinto Y, Seeman NC, Forsyth KM, Taton TA, Kiehl RA (2004) Nano Lett 4:2343CrossRefADSGoogle Scholar
  30. 30.
    Li H, Park SH, Reif JH, LaBean TH, Yan H (2004) J Am Chem Soc 126:418CrossRefPubMedGoogle Scholar
  31. 31.
    Rinker S, Ke Y, Liu Y, Chhabra R, Yan H (2008) Nat Nanotechnol 3:418CrossRefPubMedGoogle Scholar
  32. 32.
    Fruk L, Müller J, Weber G, Narváez A, Domínguez E, Niemeyer CM (2007) Chem Eur J 13:5223CrossRefGoogle Scholar
  33. 33.
    Weizmann Y, Braunschweig AB, Wilner OI, Cheglakov Z, Willner IA (2008) Proc Natl Acad Sci 105:5289CrossRefPubMedADSGoogle Scholar
  34. 34.
    Diehl MR, Zhang K, Lee HJ, Tirrell DA (2006) Science 311:1468CrossRefPubMedADSGoogle Scholar
  35. 35.
    Niemeyer CM, Koehler J, Wuerdemann C (2002) ChemBioChem 3:242CrossRefPubMedGoogle Scholar
  36. 36.
    Wilner OI, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I (2009) Nat Nanotechnol 4:249CrossRefPubMedADSGoogle Scholar
  37. 37.
    Abbaci A, Haliyo DS, Regnier S (2008) Second international conference on quantum, nano and micro technologies, Sainte Luce, Martinique, FebruaryGoogle Scholar
  38. 38.
    Held GA, Grinstein G, Tu Y (2003) Proc Natl Acad Sci 100:7575CrossRefPubMedADSGoogle Scholar
  39. 39.
    Chen YA, Chou CC, Lu X, Slate EH, Peck K, Xu W, Voit EO, Almeida JS (2006) BMC Bioinform 7:101CrossRefGoogle Scholar
  40. 40.
    Peterlinz KA, Georgiadis RM (1997) J Am Chem Soc 119:3401CrossRefGoogle Scholar
  41. 41.
    Gao Y, Wolf LK, Georgiadis RM (2006) Nucleic Acids Res 34:3370CrossRefPubMedGoogle Scholar
  42. 42.
    Carlon E, Heim T (2006) Physica A 362:433CrossRefADSGoogle Scholar
  43. 43.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607CrossRefPubMedADSGoogle Scholar
  44. 44.
    Strother T, Cai W, Zhao X, Hamers RJ, Smith LM (2000) J Am Chem Soc 122:1205CrossRefGoogle Scholar
  45. 45.
    Sieval AB, Demirel AL, Nissink JWM, Linford MR, Maas JH, de Jeu WH, Zuilhof H, Sudholter ERJ (1998) Langmuir 14:1759CrossRefGoogle Scholar
  46. 46.
    Linford MR, Fenter P, Eisenberger PM, Chidsey CED (1995) J Am Chem Soc 117:3145CrossRefGoogle Scholar
  47. 47.
    Turberfield AJ, Mitchell J, Yurke B, Mills APJ, Blakey M, Simmel F (2003) Phys Rev Lett 90:102CrossRefGoogle Scholar
  48. 48.
    Nuzzo RG, Allara DL (1983) J Am Chem Soc 105:4481CrossRefGoogle Scholar
  49. 49.
    Bain CD, Whitesides GM (1989) Angew Chem Int Ed 28:506CrossRefGoogle Scholar
  50. 50.
    Zhang YW, Seeman NC (1994) J Am Chem Soc 116:1661CrossRefGoogle Scholar
  51. 51.
    Hickman JJ, Laibinis PE, Auerbach DI, Zou C, Gardner TJ, Whitesides GM, Wrighton MS (1992) Langmuir 8:357CrossRefGoogle Scholar
  52. 52.
    Pathak S, Choi SK, Arnheim N, Thompson ME (2001) J Am Chem Soc 123:4103CrossRefPubMedGoogle Scholar
  53. 53.
    Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Nature 382:609CrossRefPubMedADSGoogle Scholar
  54. 54.
    Niemeyer CM, Burger W, Peplies J (1998) Angew Chem Int Ed 37:2265CrossRefGoogle Scholar
  55. 55.
    Sun Y, Kiang CH (2005) Nanobiotechnology 2:224Google Scholar
  56. 56.
    Beaucage SL (ed) (2007) Current protocols in nucleic acid chemistry. Wiley, New YorkGoogle Scholar
  57. 57.
    Carell T, Behrens C, Gierlich J (2003) Biomol Chem 1:2221CrossRefGoogle Scholar
  58. 58.
    Kool ET (2002) Acc Chem Res 35:936CrossRefPubMedGoogle Scholar
  59. 59.
    Tanaka K, Shionoya M (1999) J Org Chem 64:5002CrossRefGoogle Scholar
  60. 60.
    Atwell S, Meggers E, Spraggon G, Schultz PG (2001) J Am Chem Soc 123:12364CrossRefPubMedGoogle Scholar
  61. 61.
    Wagenknecht HA (2003) Angew Chem Int Ed 42:3204CrossRefGoogle Scholar
  62. 62.
    Tanaka K, Tengeiji A, Kato T, Toyama N, Shionoya M (2003) Science 299:1212CrossRefPubMedADSGoogle Scholar
  63. 63.
    Landweber LF, Baum EB (eds) (1999) DNA based computers II. American Mathematical Society, Rhode IslandGoogle Scholar
  64. 64.
    Park SH, Pistol C, Ahn SJ, Reif JH, Lebeck AR, Dwyer C, LaBean TH (2006) Angew Chem Int Ed 45:735CrossRefGoogle Scholar
  65. 65.
    Chworos A, Severcan I, Koyfman A, Weinkam P, Oroudjev E, Hansma H, Jaeger L (2004) Science 6:2068CrossRefADSGoogle Scholar
  66. 66.
    Park SH, Yin P, Liu Y, Reif JH, LaBean TH, Yan H (2005) Nano Lett 5:729CrossRefPubMedADSGoogle Scholar
  67. 67.
    Park SH, Finkelstein G, LaBean TH (2008) J Am Chem Soc 130:40CrossRefPubMedGoogle Scholar
  68. 68.
    Fujibayashi K, Hariadi R, Park SH, Winfree E, Murata S (2008) Nano Lett 8:1791CrossRefPubMedADSGoogle Scholar
  69. 69.
    Yin P, Hariadi RF, Sahu S, Choi HMT, Park SH, LaBean TH, Reif JH (2008) Science 321:824CrossRefPubMedADSGoogle Scholar
  70. 70.
    Douglas SM, Dietzl H, Lied T, Högberg B, William FG, Shih M (2009) Nature 459:414CrossRefPubMedADSGoogle Scholar
  71. 71.
    Winfree E, Liu FR, Wenzler LA, Seeman NC (1998) Nature 394:539CrossRefPubMedADSGoogle Scholar
  72. 72.
    Rothemund PWK (2006) Nature 440:297CrossRefPubMedADSGoogle Scholar
  73. 73.
    Chen JH, Seeman NC (1991) Nature 350:631CrossRefPubMedADSGoogle Scholar
  74. 74.
    Shih WM, Quispe JD, Joyce GF (2004) Nature 427:618CrossRefPubMedADSGoogle Scholar
  75. 75.
    Goodman RP, Schaap IAT, Tardin CF, Erben C, Berry RM, Schmidt CF, Turberfield AJ (2005) Science 310:1661CrossRefPubMedADSGoogle Scholar
  76. 76.
    Goodman RP, Berry RM, Turberfield AJ (2004) Chem Commun 1372Google Scholar
  77. 77.
    Douglas SM, Chou JJ, Shih WM (2007) Proc Natl Acad Sci 104:6644CrossRefPubMedADSGoogle Scholar
  78. 78.
    He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, Mao C (2007) Nature 452:198CrossRefADSGoogle Scholar
  79. 79.
    Grainger DW (2009) Nat Nanotechnol 4:543CrossRefPubMedADSGoogle Scholar
  80. 80.
    Goodman RP, Heilemann M, Doose SR, Erben CM, Kapanidis AN, Turberfield AJ (2008) Nat Nanotechnol 3:93CrossRefPubMedADSGoogle Scholar
  81. 81.
    Zhang Z, Fan C, He L (2005) Curr Nanosci 1:89CrossRefADSGoogle Scholar
  82. 82.
    LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) J Am Chem Soc 122:1848CrossRefGoogle Scholar
  83. 83.
    Wilner OI, Shimron S, Weizmann Y, Wang ZG, Willner I (2009) Nano Lett 9:2040CrossRefPubMedADSGoogle Scholar
  84. 84.
    Wang ZG, Wilner OI, Willner I (2009) Nano Lett 9:4098CrossRefPubMedADSGoogle Scholar
  85. 85.
    Shin JS, Niles Pierce A (2004) J Am Chem Soc 126:10834CrossRefPubMedGoogle Scholar
  86. 86.
    Yin P, Yan H, Daniel XG, Turberfield AJ, Reif JH (2004) Angew Chem Int Ed 43:4906CrossRefGoogle Scholar
  87. 87.
    Kershner RJ, Bozano LD, Micheel CM, Hung AM, Fornof AR, Cha JN, Rettner CT, Bersani M, Frommer J, Rothemund PWK, Wallraff GM (2009) Nat Nanotechnol 4:557CrossRefPubMedADSGoogle Scholar
  88. 88.
    Deng Z, Mao C (2004) Angew Chem Int Ed 43:4068CrossRefGoogle Scholar
  89. 89.
    Benenson Y, Elizur TP, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Nature 414:430CrossRefPubMedADSGoogle Scholar
  90. 90.
    Green SJ, Lubrich D, Turberfield AJ (2006) J Biophys 91:2966CrossRefGoogle Scholar
  91. 91.
    Venkataraman S, Dirks RM, Rothemund PWK, Winfree E, Pierce NA (2007) Nat Nanotechnol 2:490CrossRefPubMedGoogle Scholar
  92. 92.
    Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) Science 302:1380CrossRefPubMedADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of BionanotechnologyKyungwon UniversityGyeonggi-DoSouth Korea

Personalised recommendations