Journal of Materials Science

, Volume 45, Issue 9, pp 2247–2257 | Cite as

Damage assessment in structural metallic materials for advanced nuclear plants

Review

Abstract

Future advanced nuclear plants are considered to operate as cogeneration plants for electricity and heat. Metals and alloys will be the main portion of structural materials employed (including fuel claddings). Due to the operating conditions these materials are exposed to damaging conditions like creep, fatigue, irradiation and its combinations. The paper uses the most important alloys: ferritic-martensitic steels, superalloys, oxide dispersion strengthened steels and to some extent titanium aluminides to discuss its responses to these exposure conditions. Extrapolation of stress rupture data, creep strain, swelling, irradiation creep and creep–fatigue interactions are considered. Although the stress rupture- and the creep behavior seem to meet expectations, the long design lives of 60 years are really challenging for extrapolations and particularly questions like negligible creep or occurrence of diffusion creep need special attention. Ferritic matrices (including oxide dispersion strengthened (ODS), steels) have better irradiation swelling behavior than austenites. Presence and size of dispersoids having a strong influence on high-temperature strength bring only insignificant improvements in irradiation creep. A strain-range-separation based approach for creep–fatigue interactions is presented which allows a real prediction of creep–fatigue lives. An assessment of capabilities and limitations of advanced materials modeling tools with respect to damage development is given.

References

  1. 1.
    World Energy Outlook (2009) http://www.eia.doe.gov/oiaf/ieo/index.html
  2. 2.
  3. 3.
    Next Generation Nuclear Plant. http://www.nextgenerationnuclearplant.com
  4. 4.
    Sustainable Nuclear Energy Technology Platform (SNETP). http://www.snetp.eu
  5. 5.
  6. 6.
    Klueh RL, Harries DR (eds) (2001) High chromium ferritic and martensitic steels for nuclear applications. ASTM BridgeportGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Ukai S, Kaito T, Seki M, Mayorshin AA, Shishal OV (2005) J Nucl Sci Technol 42(1):109CrossRefGoogle Scholar
  10. 10.
    Nazmy M, Staubli M. US Patent 5,207,982 and EP 45505 B1Google Scholar
  11. 11.
    Klueh RL, Hashimoto N, Maziasz PJ (2005) Development of new ferritic/martensitic steels for fusion applications, Fusion Engineering 2005, Twenty-first IEEE/NPS symposium (Sept 2005), pp 1–4. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4018942&isnumber=401887
  12. 12.
    Klueh RL, Hashimoto N, Maziasz PJ (2007) J Nucl Mater 367–370(Part 1):1, 48–53Google Scholar
  13. 13.
    Klueh RL (2009) Trans Indian Inst Met 62(2):81CrossRefGoogle Scholar
  14. 14.
    Kimura A, Cho Han-Sik, Toda N, Kasada R, Yutani K, Kisimoto H, Iwata N, Ukai S, Fujiwara M (2007) J Nucl Sci Technol 44(3):323CrossRefGoogle Scholar
  15. 15.
    Lapin J, Nazmy M (2004) Mater Sci Eng A 380:298CrossRefGoogle Scholar
  16. 16.
    Magnusson P, Chen J, Rebac T, Hoffelner W (2009) In: Shibli IA, Holdsworth SR (eds) Creep and fracture in high temperature components. DEStech Publ. Inc, pp 168–176Google Scholar
  17. 17.
    Klueh RL, Hashimoto N, Maziasz PJ (2005) Scr Mater 53(3):275Google Scholar
  18. 18.
    Cipolla L, Gabrel J (2005) New creep rupture assessment of grade 91. http://www.msm.cam.ac.uk/phasetrans/2005/LINK/162.pdf
  19. 19.
    Chandra S, Cotgrove R, Holdsworth SR, Schwienheer M, Spindler MW (2005) Creep rupture data assessments of alloy 617, ECCC conference, LondonGoogle Scholar
  20. 20.
    Tavassoli A-AF, Fournier B, Sauzay M (2009) Mater Res Soc Symp Proc, vol 1125. Materials Research Society, p 1125-R02-06Google Scholar
  21. 21.
    Larson FR, Miller EJ (1952) Trans ASME 74:765Google Scholar
  22. 22.
    Manson SS, Haferd AM (1953) A linear time-temperature relation for extrapolation of creep and stress rupture data, NACA TN 2890Google Scholar
  23. 23.
    Manson SS, Ensign CR (1979) ASME Trans J Eng Mater Technol 101:317Google Scholar
  24. 24.
    Hoffelner W (1986) In: Betz W et al (eds) High temperature alloys for gas turbines and other applications 1986. D. Reidel Publ. Comp., Dordrecht, p 413Google Scholar
  25. 25.
    Klueh RL, Shingledecker JP, Swindeman RW, Hoelzer DT (2005) J Nucl Mater 341(2–3):103CrossRefADSGoogle Scholar
  26. 26.
    Ohtsuka S, Ukai S, Sakasegawa H, Fujiwara M, Kaito T, Narita T (2007) J Nucl Mater 367–370:160CrossRefGoogle Scholar
  27. 27.
    Schubert F et al (1984) Nucl Technol 66:227MathSciNetGoogle Scholar
  28. 28.
    Hoffelner W, Chen J, Pouchon MA (2006) Thermal and irradiation creep of advanced high temperature materials, Proceedings HTR2006: 3rd international topical meeting on high temperature reactor technology, October 1–4, 2006, Johannesburg, South Africa, Conference proceeding paper E 00000038. http://www.nwu.ac.za/htr2006/static-content/downloads/final_download_papers/e/E00000038.pdf
  29. 29.
    Merckling G (2005) Long term creep rupture strength assessment: the development of the European Collaborative Creep Committee Post Assessment Tests, ECCC creep conference, 12–14 September 2005, London, pp 3–19Google Scholar
  30. 30.
    Swindeman RW, Mazlasz PJ, Brinkman CR (2002) Aging effects on the creep-rupture of 9Cr-IMo-V steel, Proceedings of 2000 international joint power generation conference, Miami Beach, FL, July 23–26, 2000Google Scholar
  31. 31.
    Schubert F, Penkalla HJ, Ullrich G. Creep-rupture behaviour, a criterion for the design of metallic HTR-components with high application temperatures. http://www.iaea.org/inisnkm/nkm/aws/htgr/fulltext/iwggcr4_24.pdf
  32. 32.
    Swindeman RW, Swindeman MJ (2008) Int J Press Vessels Piping 85:72CrossRefGoogle Scholar
  33. 33.
    Gaffard V, Besson J, Gourgues-Lorenzon AF (2005) Int J Fracture 139Google Scholar
  34. 34.
    Wu R, Sandstrom R, Seitisleam F (2005) J Nucl Mater 336:279CrossRefADSGoogle Scholar
  35. 35.
    Ramirez J (2007) McGreevy high temperature materials and design issues for Gen IV reactors, 19th international conference on structural mechanics in reactor technology. http://www.engr.ncsu.edu/smirt-19/SMiRT19_WC3_McGreevy.pdf
  36. 36.
    Ukai S, Ohtsuka S (2007) J Nucl Mater 367–370:234CrossRefGoogle Scholar
  37. 37.
    Petersen C, Povstyanko A, Prokhorov V, Fedoseev A, Makarov O, Walter M (2009) J Nucl Mater 386–388:299CrossRefGoogle Scholar
  38. 38.
    Hirose T, Tanigawa H, Ando M, Kohyama A, Katoh Y, Narui M (2002) J Nucl Mater 307–311:304CrossRefGoogle Scholar
  39. 39.
    LCF data T/P 91 NIMS database, last visit (2009)Google Scholar
  40. 40.
    Garner F, Hennager CH, Igata (eds) (1987) Influence of radiation on material properties, 13th international symposium (part II), ASTM STP956Google Scholar
  41. 41.
    Rosinski StT, Grossbeck ML, Allen TR, Kumar AS (eds) (2001) Effects of radiation on materials, 20th international symposium, ASTM STP1405Google Scholar
  42. 42.
    Stoller RE, Kumar AS, Gelles DS (eds) (1992) Effects of radiation on materials, 15th international symposium, ASTM STP ASTMGoogle Scholar
  43. 43.
    Allen T, St. Bruemmer, Elmer J, Kassner M, Motta A, Odette R, Stoller R, Was G, Wolfer W, St. Zinkle (2002) Higher temperature reactor materials workshop, Sponsored by the Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES), ANL-02/12Google Scholar
  44. 44.
    Rowcliffe AF, Mansur LK, Hoelzer DT, Nanstad RK (2009) J Nucl Mater 392:341CrossRefADSGoogle Scholar
  45. 45.
    Porter DL. JOM 60(1) 20081047-4838 (print) 1543-1851 (online) issueGoogle Scholar
  46. 46.
    Allen TR, Busby JT, Klueh RL, Maloy SA, Toloczko MB (2008) JOM 60(1):15CrossRefADSGoogle Scholar
  47. 47.
    Neustroev VS, Garner FA (2009) J Nucl Mater 386–388:157CrossRefGoogle Scholar
  48. 48.
    Yvon P, Carré F (2009) J Nucl Mater 385:217CrossRefADSGoogle Scholar
  49. 49.
    Klueh RL, Harries DR (eds) (2001) High-chromium ferritic and martensitic steels for nuclear applications, ASTM, pp 90–103Google Scholar
  50. 50.
    Chen J, Jung P, Hoffelner W, Ullmaier H (2008) Acta Mater 56(2):250CrossRefGoogle Scholar
  51. 51.
    Yutani K, Kishimoto H, Kasada R, Kimura A (2007) J Nucl Mater 367–370:423CrossRefGoogle Scholar
  52. 52.
    Odette GR, Miao P, Yamamoto T, Edwards DJ, Kurtz R, Tanagawa H (2008) A comparison of cavity formation in neutron irradiated nanostructured ferritic alloys and tempered martensitic steels at high He/dpa ratio, ORNL. http://www.ms.ornl.gov/programs/fusionmatls/pdf/June2008/3_FERRITIC/3.1_Odette_41-43.pdf
  53. 53.
    Kimura A, Cho HS, Toda N, Kasada R, Kishimoto H, Iwata N, Ukai S, Ohnuki S, Fujiwara M (2005) SuperODS Steels R&D, SMINS conference, Karlsruhe. http://www.nea.fr/html/science/struct_mater/Presentations/KIMURA.pdf
  54. 54.
    Garner FA, Perrin JS (eds) (1985) Effects of radiation on materials, Twelfth international symposium, ASTM Special Technical Publication 870, ASTMGoogle Scholar
  55. 55.
    Toloczko MB, Garner FA (2004) J ASTM Int 1(4). www.astm.org/JOURNALS/JAI/PAGES/JAI11372.htm
  56. 56.
    Puigh RJ (1985) In: Garner FA, Perrin JF (eds) Effects of radiation in materials. ASTM STP 870, ASTM, Philadelphia, pp 7–18Google Scholar
  57. 57.
    Gelles DS, Puigh RJ (1985) In: Garner FA, Perrin JF (eds) Effects of radiation on materials, Twelfth international symposium, ASTM STP 870, American Society for Testing and Materials, Philadelphia, pp 19–37Google Scholar
  58. 58.
    Ryazanov AI (2004) Modern problems of irradiation-induced plastic deformation in irradiated structural materials, Poster presented at Dislocations 2004, September 13–17, La Colle-sur-Loup, FranceGoogle Scholar
  59. 59.
    Magnusson P, Chen J, Hoffelner W (2009) Met Mater Trans A 40A:2837CrossRefGoogle Scholar
  60. 60.
    Toloczko MB, Gelles DS, Garner FA, Kurtz RJ, Abe K (2004) J Nucl Mater 329–333:352CrossRefGoogle Scholar
  61. 61.
    Chen J, Jung P, Nazmy M, Hoffelner W (2006) J Nucl Mater 352:36CrossRefADSGoogle Scholar
  62. 62.
    Chen J, Hoffelner W (2009) J Nucl Mater 392(2):360CrossRefADSGoogle Scholar
  63. 63.
    Kaito T, Ohtsuka S, Inoue M, Asayama T, Uwaba T, Mizuta S, Ukai S, Furukawa T, Ito C, Kagota E, Kitamura R, Aoyama T, Inoue T (2009) J Nucl Mater 386–388:294CrossRefGoogle Scholar
  64. 64.
    Carden AE et al (eds) (1973) Fatigue at elevated temperatures, ASTM STP 520, ASTMGoogle Scholar
  65. 65.
    Hoffelner W (2007) Materials research for VHTR design codes, Structural materials for innovative nuclear systems (SMINS), Workshop proceedings, Karlsruhe, Germany, 4–6 June, pp 69–79Google Scholar
  66. 66.
    Christ H-J, Maier HJ, Teteruk R (2005) Trans Indian Inst Met 58(2–3):197Google Scholar
  67. 67.
    Hoffelner W (2009) Creep-fatigue life determination of grade 91 steel using a strain-range separation method, Proceedings of the 2009 ASME pressure vessel and piping conference PVP 2009, July 26–30, 2009, Prague, CZ, paper PVP2009-77705Google Scholar
  68. 68.
    Manson SS, Halford GR, Hirschberg MH (1971) Creep-fatigue analysis by SRP, Design for elevated temperature environment, ASME, pp 12–24Google Scholar
  69. 69.
    Hoffelner W, Melton KN, Wuethrich Ch (1983) Fat Eng Mater Struct 6(1):77CrossRefGoogle Scholar
  70. 70.
    Odette GR, Lucas GE (2001) JOM 53(7):18CrossRefGoogle Scholar
  71. 71.
    Soneda N (2008) In: Ghetta V, Gorse D, Mazière D, Pontikis V (eds) Materials issues for generation IV systems status, Open questions and challenges. Springer, Netherlands, pp 245–262Google Scholar
  72. 72.
  73. 73.
  74. 74.
    Malerba L, Caro A, Wallenius J (2008) J Nucl Mater 382(2–3):112CrossRefADSGoogle Scholar
  75. 75.
    Victoria M, Dudarev S, Boutard J, Diegele E, Lässer R, Mazouzi AAl, Caturla M, Fu C, Källne J, Malerba L, Nordlund K, Perlado M, Rieth M, Samaras M, Schäublin R, Singh B, Willaime F (2007) Fusion Eng Des 82:2413–2421 (ISSN 0920-3796)CrossRefGoogle Scholar
  76. 76.
    Samaras M, Victoria M (2008) Mater Today 11(12):54CrossRefGoogle Scholar
  77. 77.
    Samaras M, Hoffelner W, Chun Fu C, Guttmann M et al (2007) Revue Generale Nucleaire 5:50 (ISSN 0335-5004)Google Scholar
  78. 78.
    Samaras M, Hoffelner W, Victoria M (2007) J Nucl Mater 371:28 (ISSN 0022-3115)CrossRefADSGoogle Scholar
  79. 79.
    Fahrmann MG, Smith GD (2002) JOM 54(1):42CrossRefADSGoogle Scholar
  80. 80.
    Zhao SQ, Jiang Y, Dong JX, Xie XS (2006) Acta Metall Sin (Engl Lett) 19(6):425CrossRefGoogle Scholar
  81. 81.
    Samaras M, Victoria M, Hoffelner W (2009) Nucl Eng Technol 41(1):1Google Scholar
  82. 82.
    Osetsky YN, Bacon DJ, Mohles V (2003) Philos Mag 83(31–34):3623CrossRefADSGoogle Scholar
  83. 83.
    Takahashi A, Ghoniem NM (2008) J Mech Phys Solids 56:1534MATHCrossRefADSGoogle Scholar
  84. 84.
    Bako B, Weygand D, Samaras M, Chen J, Pouchon M, Gumbsch P, Hoffelner W (2007) Philos Mag A 87:3645CrossRefADSGoogle Scholar
  85. 85.
    Bakó B, Weygand D, Samaras M, Hoffelner W, Zaiser M (2008) Phys Rev B 78:144104CrossRefADSGoogle Scholar
  86. 86.
    Pouchon MA, Chen J, Ghisleni R, Michler J, Hoffelner W (2010) Exp Mech 50(1):79Google Scholar
  87. 87.
    Hoffelner W, Pouchon MA, Samaras M, Chen J, Froideval A (2008) Condition monitoring of high temperature components with sub-sized samples, Proceedings of the 4th international topical meeting on HTR technology, HTR 2008, September 28–October 1, Washington, DC, USA, HTR2008-58195Google Scholar
  88. 88.
    Sagaradse VV, Shalaev VI, Arbuzov VL, Goshchitskii BN, Tian Y, Qun W, Jiguang S (2001) J Nucl Mater 295:265CrossRefADSGoogle Scholar
  89. 89.
    Binda L, Holdsworth SR, Mazza E (2009) In: Shibli IA, Holdsworth SR (eds) Creep and fracture in high temperature components. DEStech Publ. IncGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Leader of “High Temperature Materials” GroupPaul Scherrer InstituteVilligenSwitzerland

Personalised recommendations