Journal of Materials Science

, Volume 45, Issue 9, pp 2258–2263 | Cite as

On the microstructure of single wall carbon nanotubes reinforced ceramic matrix composites

  • E. Zapata-SolvasEmail author
  • D. Gómez-García
  • A. Domínguez-Rodríguez


A microstructural modelling of the microstructure in single wall carbon nanotubes reinforced alumina ceramics has been developed. The model accounts for the main microstructural features, being quite useful to describe the carbon nanotube distribution along the ceramic matrix. The microstructural analysis derived from this model is found to give a deeper insight into the high-temperature creep of these composites.


Surface Fraction Spark Plasma Sinter Single Wall Carbon Nanotubes Stress Exponent Electron Energy Loss Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support awarded by the Spanish “Ministerio de Ciencia e Innovación” through the Grant MAT2006-10249-C02-02 and MAT2009-14351-C02-01. E. Zapata-Solvas would like to acknowledge the financial support awarded by the “Fundación Ramón Areces” during his postdoctoral stay at Imperial College London. Special acknowledgement must be extended to Prof. N. P. Padture, Dr. R. Poyato, Prof. V. Radmilovic and Dr. Z. Lee for fruitful discussion.


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefADSGoogle Scholar
  2. 2.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678CrossRefADSGoogle Scholar
  3. 3.
    Odom TW, Huang JL, Kim P, Lieber CM (1998) Nature 391:62CrossRefADSGoogle Scholar
  4. 4.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaem HF, Thio T (1996) Nature 382:54CrossRefADSGoogle Scholar
  5. 5.
    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Synth Met 103:2555CrossRefGoogle Scholar
  6. 6.
    Wang XT, Padture NP, Tanaka H (2004) Nature Mater 3:539CrossRefADSGoogle Scholar
  7. 7.
    Zapata-Solvas E, Poyato R, Gómez-García D, Domínguez-Rodríguez A, Radmilovic V, Padture NP (2008) Appl Phys Lett 92:111912CrossRefADSGoogle Scholar
  8. 8.
    Zhan GD, Kuntz JD, Garay JE, Mukherjee AK (2003) Appl Phys Lett 83:1228CrossRefADSGoogle Scholar
  9. 9.
    Tatami J, Katashima T, Komeya K, Meguro T, Wakihara T (2005) J Am Ceram Soc 88:2889CrossRefGoogle Scholar
  10. 10.
    Zhan GD, Kuntz JD, Wang H, Wang CM, Mukherjee AK (2004) Philos Mag Lett 84:419CrossRefADSGoogle Scholar
  11. 11.
    Zhan GD, Kuntz JD, Mukherjee AK, Zhu P, Koumoto K (2006) Scripta Mater 54:77CrossRefGoogle Scholar
  12. 12.
    Iijima S, Brabec C, Maiti A, Bernholc Z (1996) J Phys Chem 104:2089CrossRefGoogle Scholar
  13. 13.
    Calvert P (1999) Nature 399:210CrossRefADSGoogle Scholar
  14. 14.
    Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Phys Rev Lett 84:5552CrossRefPubMedADSGoogle Scholar
  15. 15.
    Baughman RH, Zakhidov AA, deHeer WA (2002) Science 297:787CrossRefPubMedADSGoogle Scholar
  16. 16.
    Chiang YM, Birnie D, Kingery WD (1997) Physical ceramics: principles for ceramic science and engineering. Wiley, New YorkGoogle Scholar
  17. 17.
    Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Phys Rev Lett 82:944CrossRefADSGoogle Scholar
  18. 18.
    Kis A, Csanyi G, Salvetat JP, Lee TN, Couteau E, Kulik AJ, Benoit W, Brugger J, Forro L (2004) Nature Mat 3:153CrossRefADSGoogle Scholar
  19. 19.
    Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Nanotechnology 17:1770CrossRefADSGoogle Scholar
  20. 20.
    Sun J, Gao L, Li W (2002) Chem Mater 14:5169CrossRefGoogle Scholar
  21. 21.
    Balazsi C, Konya Z, Weber F, Biro LP, Arato P (2003) Mater Sci Eng C 23:1133CrossRefGoogle Scholar
  22. 22.
    Balazsi C, Sedlackova K, Czigany Z (2008) Compos Sci Technol 68:1596CrossRefGoogle Scholar
  23. 23.
    Konya Z, Vesselenyi I, Niesz K, Kukovecz A, Demortier A, Fonseca A, Delhalle J, Mekhalif Z, Nagy JB, Koos AA, Osvath Z, Kocsonya A, Biro LP, Kiricsi I (2002) Chem Phys Lett 360:429CrossRefADSGoogle Scholar
  24. 24.
    An LN, Xu WX, Rajagopalan S, Wang C, Wang H, Fan Y, Zhang LG, Jiang DP, Kapat J, Chow L, Guo BH, Liang J, Vaidyanathan R (2004) Adv Mater 16:2036CrossRefGoogle Scholar
  25. 25.
    Vasiliev AL, Poyato R, Padture NP (2007) Scripta Mater 56:461CrossRefGoogle Scholar
  26. 26.
    Koszor O, Tapaszto, Marko M, Balazsi C (2008) Appl Phys Lett 93:201910CrossRefADSGoogle Scholar
  27. 27.
    Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Nature Mater 2:38CrossRefADSGoogle Scholar
  28. 28.
    Zapata-Solvas E, Gómez-García D, Poyato R, Lee Z, Castillo-Rodríguez M, Domínguez-Rodríguez A, Radmilovic V, Padture NP (2009) J Am Ceram Soc (accepted)Google Scholar
  29. 29.
    Xue LA, Chen IW (1990) J Am Ceram Soc 73:3518CrossRefGoogle Scholar
  30. 30.
    Zapata-Solvas E (2008) PhD Thesis, University of Seville, Department of Condensed Matter PhysicsGoogle Scholar
  31. 31.
    Poirier JP (1985) Creep of crystals. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. 32.
    Friedel J (1964) Dislocations. Pergamon Press, OxfordGoogle Scholar
  33. 33.
    Pletka BJ, Heuer AH, Mitchell TE (1977) Acta Metall 25:25CrossRefGoogle Scholar
  34. 34.
    Bretheau T, Castaing J, Rabier J, Veyssiere P (1979) Adv Phys 28:835CrossRefADSGoogle Scholar
  35. 35.
    Gómez-García D, Zapata-Solvas E, Domínguez-Rodríguez A, Kubin L (2009) Phys Rev B 80:214107Google Scholar
  36. 36.
    Zapata-Solvas E, Gomez-Garcia D, Garcia-Ganan C, Dominguez-Rodriguez A (2007) J Eur Ceram Soc 27:3325CrossRefGoogle Scholar
  37. 37.
    Dominguez-Rodriguez A, Gomez-Garcia D, Zapata-Solvas E, Shen JZ, Chaim R (2007) Scripta Mater 56:89CrossRefGoogle Scholar
  38. 38.
    Chihara K, Hiratsuka D, Shinoda Y, Akatsu T, Wakai F, Tatami J, Komeya K (2008) Mater Sci Eng B 148:203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. Zapata-Solvas
    • 1
    Email author
  • D. Gómez-García
    • 1
  • A. Domínguez-Rodríguez
    • 1
  1. 1.Departamento de Física de la Materia CondensadaUniversidad de Sevilla, ICMSE-CSICSevillaSpain

Personalised recommendations