Journal of Materials Science

, Volume 45, Issue 6, pp 1464–1468 | Cite as

Preparation of polymorphic ZnO with strong orange luminescence

Article

Abstract

Polymorphic ZnO has been prepared by a solution method at low temperature (40–90 °C) and the product has been characterized by transmission electron microscopy, UV–vis absorption, and photoluminescence spectroscopy. It is found that the morphology and microstructure of ZnO can be tuned by varying the growth temperature and crystallization condition. The as-synthesized product exhibits narrowed band gap and strong orange luminescence at 620 nm, which may arise from the interstitial oxygen ion defect introduced into ZnO in the solution growth process.

Notes

Acknowledgements

This work was supported by Shanxi Province Science Foundation for Youths (2008021029-2), Shanxi Province Foundation for Returnees (2007-39), Ministry of Science and Technology of China (2007DFA50940), and National Science Foundation of China (10904129).

References

  1. 1.
    O’Regan B, Schwarthz DT, Zakeeruddin SM, Grätzel M (2000) Adv Mater 12:1263CrossRefGoogle Scholar
  2. 2.
    Lin HM, Tzeng SJ, Hsiau PJ, Tsai WL (1998) Nanostruct Mater 10:465CrossRefGoogle Scholar
  3. 3.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1987CrossRefGoogle Scholar
  4. 4.
    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu SF, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M (2005) Nat Mater 4:42CrossRefPubMedADSGoogle Scholar
  5. 5.
    Ton-That C, Foley M, Phillips RM (2008) Nanotechnology 19:415606CrossRefGoogle Scholar
  6. 6.
    Wang ZG, Zu XT, Yang SZ, Wang LM (2006) J Mater Sci 41:3729. doi:10.1007/s10853-006-7180-9 CrossRefADSGoogle Scholar
  7. 7.
    Gao P-X, Ding Y, Wang ZL (2009) Nano Lett 9:137CrossRefPubMedADSGoogle Scholar
  8. 8.
    Liu ZW, Yeo SW, Ong CK (2007) J Mater Sci 42:6489. doi:10.1007/s10853-007-1557-2 CrossRefADSGoogle Scholar
  9. 9.
    Du GH, Xu F, Yuan ZY, Van Tendeloo G (2006) Appl Phys Lett 88:243101CrossRefADSGoogle Scholar
  10. 10.
    Nakano Y, Morikawa T, Ohwaki T, Taga Y (2005) Appl Phys Lett 87:052111CrossRefADSGoogle Scholar
  11. 11.
    Kim KJ, Park YR (2004) J Appl Phys 96:4150CrossRefADSGoogle Scholar
  12. 12.
    Qiu X, Li L, Li G (2006) Appl Phys Lett 88:114103CrossRefADSGoogle Scholar
  13. 13.
    Anthony SP, Lee JI, Kim JK (2007) Appl Phys Lett 90:103107CrossRefADSGoogle Scholar
  14. 14.
    Ziegler E, Heinrich A, Oppermann H, Stover G (1981) Phys Status Solidi A 66:635CrossRefGoogle Scholar
  15. 15.
    Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Prog Mater Sci 50:293CrossRefGoogle Scholar
  16. 16.
    Ahsanulhaq Q, Kim SH, Kim JH, Hahn YB (2008) Mater Res Bull 43:3483CrossRefGoogle Scholar
  17. 17.
    Qian HS, Yu SH, Gong JY, Luo LB, Wen LL (2005) Cryst Growth Des 5:935CrossRefGoogle Scholar
  18. 18.
    Tam KH, Cheung CK, Leung YH, Djurisic AB, Ling CC, Beling CD, Fung S, Kwok WM, Chan WK, Phillips DL, Ding L, Ge WK (2006) J Phys Chem B 110:20865CrossRefPubMedGoogle Scholar
  19. 19.
    Wang J, Gao L (2004) J Cryst Growth 262:290CrossRefADSGoogle Scholar
  20. 20.
    Liu M, Kitai AH, Mascher P (1992) J Lumin 54:35CrossRefGoogle Scholar
  21. 21.
    Wu XL, Siu GG, Fu CL, Ong HC (2001) Appl Phys Lett 78:2285CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical ChemistryZhejiang Normal UniversityJinhuaChina
  2. 2.Key Laboratory of Interface Science and Engineering in Advanced Materials of Taiyuan University of Technology, Ministry of EducationTaiyuanChina
  3. 3.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations