Journal of Materials Science

, Volume 45, Issue 5, pp 1385–1392 | Cite as

Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes

Article

Abstract

Due to its strong absorption to visible light and intrinsic polarizability, β-Bi2O3 could be a promising candidate for the visible-light-activated photocatalysis. However, its structural instability during a photocatalytic process prevents it from being used practically. In this work, titanium-doped β-Bi2O3 was synthesized by a hydrothermal method with subsequent calcination under 400 °C. Its crystal structure, photophysical property, and structural stability were investigated by using powder X-ray diffraction, Raman, infrared and diffuse reflectance UV–vis spectroscopies. The crystal structure of the titanium-doped β-Bi2O3 is analogous to β-Bi2O3. These two oxides exhibited comparable photocatalytic activities on the photodegradation of indigo carmine, rhodamine B, and methylene blue under visible-light irradiation. However, unlike β-Bi2O3, the titanium-doped β-Bi2O3 was quite stable during these photocatalytic reactions. The improvement in structural stability was attributable to the substitution of titanium species in the host crystal lattice. The current investigation results point toward the possibility of metal ion-doped bismuth oxides as efficient visible-light-activated photocatalysts.

References

  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefPubMedADSGoogle Scholar
  2. 2.
    Yamashita H, Anpo M (2004) Catal Surv Asia 8:35CrossRefGoogle Scholar
  3. 3.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  4. 4.
    Chen X, Mao SS (2007) Chem Rev 107:2891CrossRefPubMedGoogle Scholar
  5. 5.
    Luan J-F, Hao X-P, Zheng S-R, Luan G-Y, Wu X-S (2006) J Mater Sci 41:8001. doi:10.1007/s10853-006-0869-y CrossRefADSGoogle Scholar
  6. 6.
    Wang D, Kako T, Ye J (2008) J Am Chem Soc 130:2724CrossRefPubMedGoogle Scholar
  7. 7.
    Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo MH (2008) Angew Chem Int Ed 47:1CrossRefGoogle Scholar
  8. 8.
    Inoue Y (2006) In: Fierro JLG (ed) Metal oxides chemistry and applications. Taylor & Francis, Boca Raton, FLGoogle Scholar
  9. 9.
    Kim HG, Hwang DW, Lee JS (2004) J Am Chem Soc 126:8912CrossRefPubMedGoogle Scholar
  10. 10.
    Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
  11. 11.
    Shan Z, Wu J, Xu F, Huang FQ, Ding HM (2008) J Phys Chem C 112:15423CrossRefGoogle Scholar
  12. 12.
    Peter LM, Wijayantha KGU, Riley DJ, Waggett JP (2003) J Phys Chem B 107:8378CrossRefGoogle Scholar
  13. 13.
    Vinodgopal K, Kamat PV (1995) Sol Energy Mater Sol Cells 38:401CrossRefGoogle Scholar
  14. 14.
    Tang J, Zou Z, Ye J (2007) J Phys Chem C 111:12779CrossRefGoogle Scholar
  15. 15.
    Dolocan FI V (1981) Phys Status Solidi A 64:755CrossRefGoogle Scholar
  16. 16.
    Leontie L, Caraman M, Delibas M, Rusu GI (2001) Mater Res Bull 36:1629CrossRefGoogle Scholar
  17. 17.
    Walsh A, Watson GW, Payne DJ, Edgell RG, Guo J, Glans P-A, Learmonth T, Smith KE (2006) Phys Rev B: Condens Matter Mater Phys 73:235104ADSGoogle Scholar
  18. 18.
    Lin X, Huang F, Wang W, Shi J (2007) Scr Mater 56:189CrossRefGoogle Scholar
  19. 19.
    Medernach JW, Snyder RL (1978) J Am Ceram Soc 61:494CrossRefGoogle Scholar
  20. 20.
    Shuk P, Wiemhöfer H-D, Guth U, Göpel W, Greenblatt M (1996) Solid State Ionics 89:179CrossRefGoogle Scholar
  21. 21.
    Drache M, Roussel P, Wignacourt J-P (2007) Chem Rev 107:80CrossRefPubMedGoogle Scholar
  22. 22.
    Gurunathan K (2004) Int J Hydrogen Energy 29:933CrossRefGoogle Scholar
  23. 23.
    Bessekhouad Y, Robert D, Weber JV (2005) Catal Today 101:315CrossRefGoogle Scholar
  24. 24.
    Zhang L, Wang W, Yang J, Chen Z, Zhang W, Zhou L, Liu S (2006) Appl Catal A 308:105CrossRefGoogle Scholar
  25. 25.
    Hameed A, Montini T, Gombac V, Fornasiero P (2008) J Am Chem Soc 130:9658CrossRefPubMedGoogle Scholar
  26. 26.
    Xie J, Xiaomeng L, Chen M, Zhao G, Song Y, Lu S (2008) Dyes Pigm 77:43CrossRefGoogle Scholar
  27. 27.
    Eberl J (2008) Visible light photo-oxidations in the presence of bismuth oxides. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, GermanyGoogle Scholar
  28. 28.
    Eberl J, Kisch H (2008) Photochem Photobiol Sci 7:1400CrossRefPubMedGoogle Scholar
  29. 29.
    Zhou L, Wang W, Xu H, Sun S, Shang M (2009) Chem Eur J 15:1776CrossRefGoogle Scholar
  30. 30.
    Chai SY, Kim YJ, Jung MH, Chakraborty AK, Jung D, Lee WI (2009) J Catal 262:144CrossRefGoogle Scholar
  31. 31.
    Hardcastle FD, Wachs IE (1992) J Solid State Chem 97:319CrossRefADSGoogle Scholar
  32. 32.
    Kharton VV, Naumovich EN, Yaremchenko AA, Marques FMB (2001) J Solid State Electrochem 5:160CrossRefGoogle Scholar
  33. 33.
    Blower SK, Greaves C (1988) Acta Crystallogr C 44:587CrossRefGoogle Scholar
  34. 34.
    Depero LE, Sangaletti L (1996) J Solid State Chem 122:439CrossRefADSGoogle Scholar
  35. 35.
    Wada N, Morinaga K (1998) J Ceram Soc Jpn 106:576Google Scholar
  36. 36.
    Yao WF, Xu XH, Wang H, Zhou JT, Yang XN, Zhang Y, Shang SX, Huang BB (2004) Appl Catal B 52:109CrossRefGoogle Scholar
  37. 37.
    Zhou J, Zou Z, Ray AK, Zhao XS (2007) Ind Eng Chem Res 46:745CrossRefGoogle Scholar
  38. 38.
    Hazra S, Ghosh A (1995) Phys Rev B 51:851CrossRefADSGoogle Scholar
  39. 39.
    Davydov AA (2003) Molecular spectroscopy of oxide catalyst surfaces. Wiley, Chichester, EnglandCrossRefGoogle Scholar
  40. 40.
    Barreca D, Morazzoni F, Rizzi GA, Scotti R, Tondello E (2001) Phys Chem Chem Phys 3:1743CrossRefGoogle Scholar
  41. 41.
    Butler MA (1977) J Appl Phys 48:1914CrossRefADSGoogle Scholar
  42. 42.
    Dolocan V (1978) Appl Phys A 16:405Google Scholar
  43. 43.
    Evarestov RA, Shapovalov VO, Veryazov VA (1994) Phys Status Solidi B 183:K15CrossRefGoogle Scholar
  44. 44.
    O’Regan B, Gratzel M (1991) Nature 353:737CrossRefADSGoogle Scholar
  45. 45.
    Hubbard CR, Snyder RL (1988) Powder Diffr 3:74Google Scholar
  46. 46.
    Greaves C, Blower SK (1988) Mater Res Bull 23:1001CrossRefGoogle Scholar
  47. 47.
    Taylor P, Sunder S, Lopata VJ (1984) Can J Chem 62:2863CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yan Wang
    • 1
  • Yanyuan Wen
    • 1
  • Hanming Ding
    • 1
  • Yongkui Shan
    • 1
  1. 1.Department of ChemistryEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations