Journal of Materials Science

, Volume 45, Issue 5, pp 1193–1210 | Cite as

The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles

  • T. H. Hsieh
  • A. J. Kinloch
  • K. Masania
  • J. Sohn Lee
  • A. C. Taylor
  • S. Sprenger


The present paper investigates the effect of adding silica nanoparticles to an anhydride-cured epoxy polymer in bulk and when used as the matrix of carbon- and glass-fibre reinforced composites. The formation of ‘hybrid’ epoxy polymers, containing both silica nanoparticles and carboxyl-terminated butadiene-acrylonitrile (CTBN) rubber microparticles, is also discussed. The structure/property relationships are considered, with an emphasis on the toughness and the toughening mechanisms. The fracture energy of the bulk epoxy polymer was increased from 77 to 212 J/m2 by the presence of 20 wt% of silica nanoparticles. The observed toughening mechanisms that were operative were (a) plastic shear-yield bands, and (b) debonding of the matrix from the silica nanoparticles, followed by plastic void-growth of the epoxy. The largest increases in toughness observed were for the ‘hybrid’ materials. Here a maximum fracture energy of 965 J/m2 was measured for a ‘hybrid’ epoxy polymer containing 9 wt% and 15 wt% of the rubber microparticles and silica nanoparticles, respectively. Most noteworthy was the observation that these increases in the toughness of the bulk polymers were found to be transferred to the fibre composites. Indeed, the interlaminar fracture energies for the fibre-composite materials were increased even further by a fibre-bridging toughening mechanism. The present work also extends an existing model to predict the toughening effect of the nanoparticles in a thermoset polymer. There was excellent agreement between the predictions and the experimental data for the epoxy containing the silica nanoparticles, and for epoxy polymers containing micrometre-sized glass particles. The latter, relatively large, glass particles were investigated to establish whether a ‘nano-effect’, with respect to increasing the toughness of the epoxy bulk polymers, did indeed exist.


Fracture Energy Silica Nanoparticles Epoxy Matrix Rubber Particle Dynamic Mechanical Thermal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the EPSRC for a doctoral training award for Mr. Masania. They would also like to acknowledge the general support of Emerald Performance Materials, Henkel, Nanoresins and the US Army European Research Office. Some of the equipment used was provided by Dr. Taylor’s Royal Society Mercer Junior Award for Innovation.


  1. 1.
    Broutman LJ, Sahu S (1971) Mater Sci Eng 8:98CrossRefGoogle Scholar
  2. 2.
    Spanoudakis J, Young RJ (1984) J Mater Sci 19:473. doi: 10.1007/BF00553571 CrossRefGoogle Scholar
  3. 3.
    McGrath LM, Parnas RS, Lenhart JL, King S (2006) Polym Mater Sci Eng 94:683Google Scholar
  4. 4.
    Griffiths R, Holloway D (1970) J Mater Sci 5:302. doi: 10.1007/BF02397781 CrossRefGoogle Scholar
  5. 5.
    Dixon DG, Harris SJ, Dempster M, Nicholls P (1998) J Adhesion 65:131CrossRefGoogle Scholar
  6. 6.
    Kinloch AJ, Taylor AC (2002) J Mater Sci 37:433. doi: 10.1023/A:1013735103120433-460 CrossRefGoogle Scholar
  7. 7.
    Lin K-F, Shieh Y-D (1998) J Appl Polym Sci 70:2313CrossRefGoogle Scholar
  8. 8.
    Kim DS, Cho K, Kim JK, Park CE (1996) Polym Eng Sci 36:755CrossRefGoogle Scholar
  9. 9.
    Drake RS, Siebert AR (1975) SAMPE Quart 6:11Google Scholar
  10. 10.
    Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Polymer 24:1341CrossRefGoogle Scholar
  11. 11.
    Yee AF, Pearson RA (1986) J Mater Sci 21:2462. doi: 10.1007/BF01114293 CrossRefGoogle Scholar
  12. 12.
    Bucknall CB, Partridge IK (1983) Polymer 24:639CrossRefGoogle Scholar
  13. 13.
    Kinloch AJ, Yuen ML, Jenkins SD (1994) J Mater Sci 29:3781. doi: 10.1007/BF00357349 CrossRefGoogle Scholar
  14. 14.
    Bucknall CB, Gilbert AH (1989) Polymer 30:213CrossRefGoogle Scholar
  15. 15.
    Johnsen BB, Kinloch AJ, Taylor AC (2005) Polymer 46:7352CrossRefGoogle Scholar
  16. 16.
    Kinloch AJ, Finch CA, Hashemi S (1987) Polym Comm 28:322Google Scholar
  17. 17.
    Pearson RA, Yee AF (1989) J Mater Sci 24:2571. doi: 10.1007/BF01174528 CrossRefGoogle Scholar
  18. 18.
    Liang YL, Pearson RA (2009) Polymer 50:4895CrossRefGoogle Scholar
  19. 19.
    Kim JK, Baillie C, Poh J, Mai YW (1992) Composites Sci Tech 43:283CrossRefGoogle Scholar
  20. 20.
    Gilchrist MD, Svensson N (1995) Composites Sci Tech 55:195CrossRefGoogle Scholar
  21. 21.
    Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S, Egan D (2006) J Mater Sci 41:5043. doi: 10.1007/s10853-006-0130-8 CrossRefGoogle Scholar
  22. 22.
    Kinloch AJ, Lee JH, Taylor AC, Sprenger S, Eger C, Egan D (2003) J Adhesion 79:867CrossRefGoogle Scholar
  23. 23.
    Blackman BRK, Kinloch AJ, Sohn Lee J, Taylor AC, Agarwal R, Schueneman G, Sprenger S (2007) J Mater Sci 42:7049. doi: 10.1007/s10853-007-1768-6 CrossRefGoogle Scholar
  24. 24.
    Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48:530CrossRefGoogle Scholar
  25. 25.
    Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) J Mater Sci 40:5083. doi: 10.1007/s10853-005-1716-2 CrossRefGoogle Scholar
  26. 26.
    BS-EN-2564 (1998) Carbon fibre laminates—Determination of the fibre, resin and void contents. BSI, LondonGoogle Scholar
  27. 27.
    BS-EN-ISO-527-2 (1996) Plastics—Determination of tensile properties—Part 2: test conditions for moulding and extrusion plastics. BSI, LondonGoogle Scholar
  28. 28.
    Williams JG, Ford H (1964) J Mech Eng Sci 6:405CrossRefGoogle Scholar
  29. 29.
    ISO-13586 (2000) Plastics-determination of fracture toughness (GIC and KIC)—linear elastic fracture mechanics (LEFM) approach. ISO, GenevaGoogle Scholar
  30. 30.
    ASTM-D5528 (2001) Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM, West ConshohockenGoogle Scholar
  31. 31.
    Sue HJ (1991) Polym Eng Sci 31:270CrossRefGoogle Scholar
  32. 32.
    Sue HJ, Yee AF (1993) J Mater Sci 28:2975. doi: 10.1007/BF00354702 CrossRefGoogle Scholar
  33. 33.
    Pearson RA, Yee AF (1991) J Mater Sci 26:3828. doi: 10.1007/BF01184979 CrossRefGoogle Scholar
  34. 34.
    Baller J, Becker N, Ziehmer M, Thomassey M, Zielinski B, Müller U, Sanctuary R (2009) Polymer 50:3211CrossRefGoogle Scholar
  35. 35.
    Fox TG (1956) Bull Am Phys Soc 1:123Google Scholar
  36. 36.
    Mohammed RD (2007) PhD in Mechanical Engineering, Imperial College of Science, Technology & Medicine, LondonGoogle Scholar
  37. 37.
    Lee JH (2006) PhD in Mechanical Engineering, Imperial College of Science, Technology & Medicine, LondonGoogle Scholar
  38. 38.
    Goodfellow Product Catalogue (2005) Goodfellow, HuntingdonGoogle Scholar
  39. 39.
    Pascoe KJ (1978) An introduction to the properties of engineering materials. Van Nostrand Reinhold, LondonGoogle Scholar
  40. 40.
    Kerner EH (1956) Proc Phys Soc B 69:808CrossRefGoogle Scholar
  41. 41.
    Nielsen LE (1966) J Appl Polym Sci 10:97CrossRefGoogle Scholar
  42. 42.
    Halpin JC, Pagano NJ (1969) J Composite Mater 3:720Google Scholar
  43. 43.
    Halpin JC (1969) J Composite Mater 3:732Google Scholar
  44. 44.
    Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344CrossRefGoogle Scholar
  45. 45.
    Vollenberg PHT, Heikens D (1989) Polymer 30:1656CrossRefGoogle Scholar
  46. 46.
    Lewis TB, Nielsen LE (1970) J Appl Polym Sci 14:1449CrossRefGoogle Scholar
  47. 47.
    McGee S, McCullough RL (1981) Polym Compos 2:149CrossRefGoogle Scholar
  48. 48.
    Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New YorkGoogle Scholar
  49. 49.
    Nielsen LE (1968) J Composite Mater 2:120Google Scholar
  50. 50.
    Pearson RA, Yee AF (1986) J Mater Sci 21:2475. doi: 10.1007/BF01114294 CrossRefGoogle Scholar
  51. 51.
    Andrews EH (1968) Fracture in polymers. Oliver & Boyd, EdinburghGoogle Scholar
  52. 52.
    Kinloch AJ (1986) In: Kinloch AJ (ed) Structural adhesives—Developments in resins and primers. Applied Science Publishers, LondonGoogle Scholar
  53. 53.
    Karger-Kocsis J, Friedrich K (1992) Colloid Polym Sci 270:549CrossRefGoogle Scholar
  54. 54.
    Cheng C, Hiltner A, Baer E, Soskey PR, Mylonakis SG (1995) J Mater Sci 30:587. doi: 10.1007/BF00356315 CrossRefGoogle Scholar
  55. 55.
    Azimi HR, Pearson RA, Hertzberg RW (1996) Polym Eng Sci 36:2352CrossRefGoogle Scholar
  56. 56.
    Chen TK, Jan YH (1992) J Mater Sci 27:111. doi: 10.1007/BF00553845 CrossRefGoogle Scholar
  57. 57.
    Hunston DL, Moulton RJ, Johnston NJ, Bascom WD (1985) In: Johnston NJ (ed) Toughened composites. ASTM, PhiladelphiaGoogle Scholar
  58. 58.
    Sue HJ, Yee AF (1989) J Mater Sci 24:1447. doi: 10.1007/BF02397085 CrossRefGoogle Scholar
  59. 59.
    Bagheri R, Pearson RA (1996) J Mater Sci 31:3945. doi: 10.1007/BF00352655 CrossRefGoogle Scholar
  60. 60.
    Bagheri R, Pearson RA (1995) J Appl Polym Sci 58:427CrossRefGoogle Scholar
  61. 61.
    Caddell RM (1980) Deformation and fracture of solids. Prentice-Hall, Englewood CliffsGoogle Scholar
  62. 62.
    Lee J, Yee AF (2000) Polymer 41:8375CrossRefGoogle Scholar
  63. 63.
    Kawaguchi T, Pearson RA (2003) Polymer 44:4239CrossRefGoogle Scholar
  64. 64.
    Kinloch AJ (1987) Adhesion and adhesives: science and technology. Chapman & Hall, LondonGoogle Scholar
  65. 65.
    Norman DA, Robertson RE (2003) Polymer 44:2351CrossRefGoogle Scholar
  66. 66.
    Huang Y, Kinloch AJ (1992) J Mater Sci 27:2753. doi: 10.1007/BF00540702 CrossRefGoogle Scholar
  67. 67.
    Huang Y, Kinloch AJ (1992) J Mater Sci 27:2763. doi: 10.1007/BF00540703 CrossRefGoogle Scholar
  68. 68.
    Evans AG, Williams S, Beaumont PWR (1985) J Mater Sci 20:3668. doi: 10.1007/BF01113774 CrossRefGoogle Scholar
  69. 69.
    Dekkers MEJ, Heikens D (1984) J Mater Sci 19:3271. doi: 10.1007/BF00549814 CrossRefGoogle Scholar
  70. 70.
    Dekkers MEJ, Heikens D (1985) J Mater Sci 20:3873. doi: 10.1007/BF00552375 CrossRefGoogle Scholar
  71. 71.
    Sultan JN, McGarry FJ (1973) Polym Eng Sci 13:29CrossRefGoogle Scholar
  72. 72.
    Guild FJ, Young RJ (1989) J Mater Sci 24:298. doi: 10.1007/BF00660971 CrossRefGoogle Scholar
  73. 73.
    Guild FJ, Young RJ (1989) J Mater Sci 24:2454. doi: 10.1007/BF01174511 CrossRefGoogle Scholar
  74. 74.
    Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Applied Science Publishers, LondonGoogle Scholar
  75. 75.
    Lee J, Yee AF (2000) Polymer 41:8363CrossRefGoogle Scholar
  76. 76.
    Green DJ, Nicholson PS, Embury JD (1979) J Mater Sci 14:1657. doi: 10.1007/BF00569287 CrossRefGoogle Scholar
  77. 77.
    Faber KT, Evans AG (1983) Acta Metall 31:565CrossRefGoogle Scholar
  78. 78.
    Sun CJ, Saffari P, Sadeghipour K, Baran G (2005) Mater Sci Eng A 405:287CrossRefGoogle Scholar
  79. 79.
    Pukanszky B, Voros G (1996) Polym Compos 17:384CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringImperial College LondonLondonUK
  2. 2.Nanoresins AGGeesthachtGermany

Personalised recommendations