Advertisement

Journal of Materials Science

, Volume 45, Issue 4, pp 1123–1129 | Cite as

The electrochemical properties of MgNi–x wt% TiNi0.56Co0.44 (x = 0, 10, 30, 50) composite alloys

  • Hongxia Huang
  • Kelong HuangEmail author
  • Dongyang Chen
  • Suqin Liu
  • Shuxin Zhuang
Article

Abstract

The effect of ball milling time and different content of the TiNi0.56Co0.44 alloy on the structure and electrochemical properties of MgNi–x wt% TiNi0.56Co0.44 (x = 0, 10, 30, 50) alloys were studied systematically. The results indicated that the cycle durability of the alloy was improved with addition of the TiNi0.56Co0.44 alloy. By cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analysis, it was shown that the introduction of the TiNi0.56Co0.44 alloy could significantly improve the catalytic activity of the electrode, decrease the charge-transfer reaction resistance and the diffusion impedance of H atoms. Potentiodynamic polarization curves revealed that anti-corrosion performance of the composite electrodes was enhanced, which was responsible for the ameliorative cycle stability of composite alloys. A high discharge capacity and good cycle stability had been observed for the x = 10 (10 h) composite electrode with a maximum discharge capacity of 397 mAh/g and capacity retaining rate (S50) of 62%.

Keywords

Discharge Capacity Electrochemical Impedance Spectroscopy Potentiodynamic Polarization Composite Electrode Cycle Stability 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (50772133) and the Open Subject of State of Key Laboratory for Powder Metallurgy of Central South University (2008112009).

References

  1. 1.
    He G, Jiao LF, Yuan HT, Zhang YY, Wang YJ (2008) J Alloys Compd 450:375CrossRefGoogle Scholar
  2. 2.
    Liu JW, Jiao LF, Yuan HT (2005) J Alloys Compd 403:270CrossRefGoogle Scholar
  3. 3.
    Zhang YH, Zhao DL, Li BW, Ren HP, Guo SH, Wang XL (2007) J Mater Sci 42:8172. doi: https://doi.org/10.1007/s10853-007-1689-4 CrossRefGoogle Scholar
  4. 4.
    Yuan HT, Li QD, Song HN, Wang YJ, Liu JW (2003) J Alloys Compd 353:322CrossRefGoogle Scholar
  5. 5.
    Liu FJ, Suda S (1996) J Alloys Compd 232:212CrossRefGoogle Scholar
  6. 6.
    Hatano YJ, Tachikawa T, Mu D, Abe T, Watanabe K, Morozumi S (2002) J Alloys Compd 330–332:816CrossRefGoogle Scholar
  7. 7.
    Huang HX, Huang KL, Liu SQ, Zhuang SX, Chen DY (2009) J Mater Sci 44:4460. doi: https://doi.org/10.1007/s10853-009-3676-4 CrossRefGoogle Scholar
  8. 8.
    Rongeat C, Grosjean MH, Ruggeri S, Dehmas M, Bourlot S, Marcotte S, Roué L (2006) J Power Sources 158:747CrossRefGoogle Scholar
  9. 9.
    Wang Y, Qiao SZ, Wang X (2008) Int J Hydrogen Energy 33:1023CrossRefGoogle Scholar
  10. 10.
    Chu HL, Qiu SJ, Sun LX, Zhang Y, Xu F, Zhu M, Hu WY (2008) Int J Hydrogen Energy 33:755CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Gao Y, Zeng MQ, Li BL, Zhu M (2003) J Mater Sci 38:2499. doi: https://doi.org/10.1023/A:1023921605728 CrossRefGoogle Scholar
  13. 13.
    Santos SF, De Castro JFR, Ishikawa TT, Ticianelli EA (2008) J Mater Sci 43:2889. doi: https://doi.org/10.1007/s10853-007-1924-z CrossRefGoogle Scholar
  14. 14.
    Chu HL, Zhang Y, Sun LX, Qiu SJ, Xu F, Yuan HT (2007) Int J Hydrogen Energy 32:1898CrossRefGoogle Scholar
  15. 15.
    Yu XB, Walker GS, Grant DM, Wu Z, Xia BJ, Shen J (2005) Appl Phys Lett 87:133121CrossRefGoogle Scholar
  16. 16.
    Si TZ, Zhang QA (2006) J Alloys Compd 414:317CrossRefGoogle Scholar
  17. 17.
    Zhang YH, Li BW, Ren HP, Wu ZW, Cai Y, Wang XL (2007) Mater Chem Phys 105:86CrossRefGoogle Scholar
  18. 18.
    Miao H, Pan HG, Zhang SC, Chen N, Li R, Gao MX (2007) Int J Hydrogen Energy 32:3387CrossRefGoogle Scholar
  19. 19.
    Zhang YH, Li BW, Zhao DL, Ren HP, Cai Y, Dong XP, Wang XL (2007) Int J Hydrogen Energy 32:3420CrossRefGoogle Scholar
  20. 20.
    Wang MW, Li FY, Zhang RB (2004) Catal Today 93–95:603CrossRefGoogle Scholar
  21. 21.
    He YG, Qiao MH, Hu HR, Pei Y, Li HX, Deng JF (2002) Mater Lett 56:952CrossRefGoogle Scholar
  22. 22.
    Liu FJ, Suda S (1995) J Alloys Compd 231:696CrossRefGoogle Scholar
  23. 23.
    Li L, Wu DC, Liang GY, Sun ZB, Guo YL (2009) J Alloys Compd 474:378CrossRefGoogle Scholar
  24. 24.
    Iwakura C, Shin-ya R, Miyanohara K, Nohara S, Inoue H (2001) Electrochim Acta 46:2781CrossRefGoogle Scholar
  25. 25.
    Chen Y (1998) Catal Today 44:3CrossRefGoogle Scholar
  26. 26.
    Guo ZP, Huang ZG, Konstantinov K, Liu HK, Dou SX (2006) Int J Hydrogen Energy 31:2032CrossRefGoogle Scholar
  27. 27.
    Kitmura T, Iwakura C, Tamura H (1982) Electrochim Acta 29:1729CrossRefGoogle Scholar
  28. 28.
    Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T (1993) J Alloys Compd 202:183CrossRefGoogle Scholar
  29. 29.
    Tian QF, Zhang Y, Tan ZC, Sun LX, Xu F, Yuan HF (2006) Acta Phys Chim Sin 22(3):301CrossRefGoogle Scholar
  30. 30.
    Ma S, Gao MX, Li R, Pan HG, Lei YQ (2008) J Alloys Compd 457:457CrossRefGoogle Scholar
  31. 31.
    Wang Y, Wang X, Gao XP, Shen PW (2007) Int J Hydrogen Energy 32:4180CrossRefGoogle Scholar
  32. 32.
    Liu N, Wang JL, Wu YM, Wang LM (2008) J Mater Sci 43:2550. doi: https://doi.org/10.1007/s10853-008-2447-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hongxia Huang
    • 1
    • 2
  • Kelong Huang
    • 1
    Email author
  • Dongyang Chen
    • 1
  • Suqin Liu
    • 1
  • Shuxin Zhuang
    • 1
  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.College of Chemistry and Biological EngineeringGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations