Advertisement

Journal of Materials Science

, Volume 45, Issue 4, pp 1107–1116 | Cite as

Electrical and thermal conductivities of porous SiC/SiO2/C composites with different morphology from carbonized wood

  • Joko Sulistyo
  • Toshimitsu HataEmail author
  • Hiroyuki Kitagawa
  • Paul Bronsveld
  • Masashi Fujisawa
  • Kozo Hashimoto
  • Yuji Imamura
Article

Abstract

Porous SiC/SiO2/C composites exhibiting a wide range of high thermal and electrical conductivities were developed from carbonized wood infiltrated with SiO2. As a pre-treatment, the samples were either heated at 100 °C or kept at room temperature followed by sintering in the temperature range 1200–1800 °C. The microstructure, the morphology, and the electrical and thermal conductivities of the composites were investigated. Pre-treatment at room temperature followed by sintering up to 1800 °C produced composites exhibiting a greater size of carbon crystallites, a higher ordering of the microstructure of carbon and β-SiC and a smaller amount of SiO2, resulting in electrical and thermal conductivities of 1.17 × 104 Ω−1 m−1 and 25 W/mK, respectively. The thermal conductivity could be further improved to 101 W/mK by increasing the density of the composite to 1.82 g/cm3. In contrast, the pre-treatment at 100 °C produced composites possessing a lower thermal conductivity of 2 W/mK.

Keywords

Sinter Temperature Solid Reaction Carbonize Wood Transverse Optic Laser Flash Method 

References

  1. 1.
    Ishimaru K, Hata T, Bronsveld P, Imamura Y (2007) J Mater Sci 42:2662. doi: https://doi.org/10.1007/s10853-006-1361-4 CrossRefGoogle Scholar
  2. 2.
    Rodriguez-Reinoso F, Molina-Sabio M (1992) Carbon 30:1111CrossRefGoogle Scholar
  3. 3.
    Greil P (2001) J Eur Ceram Soc 21:105CrossRefGoogle Scholar
  4. 4.
    Fujisawa M, Hata T, Bronsveld P, Castro V, Tanaka F, Kikuchi H, Furuno T, Imamura Y (2004) J Eur Ceram Soc 24:3575CrossRefGoogle Scholar
  5. 5.
    Vogli E, Sieber H, Greil P (2002) J Eur Ceram Soc 22:2663CrossRefGoogle Scholar
  6. 6.
    Varela-Feria FM, Ramirez-Rico J, de Arellano-Lopez AR, Martinez-Fernandez J, Singh M (2008) J Mater Sci 43:933. doi: https://doi.org/10.1007/s10853-007-2207-4 CrossRefGoogle Scholar
  7. 7.
    Greil P (2002) Adv Eng Mater 4:247CrossRefGoogle Scholar
  8. 8.
    Shiryaev AA, Wiedenbeck M, Reutsky V, Polyakov VB, Melnik NN, Lebedev AA, Yakimova R (2008) J Phys Chem Solids 69:2492CrossRefGoogle Scholar
  9. 9.
    Cheung TLY, Ng DHL (2007) J Am Ceram Soc 90:559CrossRefGoogle Scholar
  10. 10.
    Klett JW, McMillan AD, Gallego NC, Walls CA (2004) J Mater Sci 39:3659. doi: https://doi.org/10.1023/B:JMSC.0000030719.80262.f8 CrossRefGoogle Scholar
  11. 11.
    Warren BE (1941) Phys Rev 59:693CrossRefGoogle Scholar
  12. 12.
    Vyshnyakova K, Yushin G, Pereselentseva L, Gogotsi Y (2006) Int J Appl Ceram Technol 3:485CrossRefGoogle Scholar
  13. 13.
    Lu Q, Hu J, Tang K, Qian Y, Zhou G, Liu X, Zhu J (1999) Appl Phys Lett 75:507CrossRefGoogle Scholar
  14. 14.
    Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) Carbon 45:1686CrossRefGoogle Scholar
  15. 15.
    Kuomoto K, Takeda S, Pai CH, Sato T, Yanagida H (1989) J Am Ceram Soc 72:1985CrossRefGoogle Scholar
  16. 16.
    Kercher AK, Nagle DC (2003) Carbon 41:15CrossRefGoogle Scholar
  17. 17.
    Nakashima S, Harima H (1997) Phys Status Solidi (a) 162:39CrossRefGoogle Scholar
  18. 18.
    Rohmfeld S, Hundhausen S, Ley L (1999) Phys Status Solidi (b) 215:115CrossRefGoogle Scholar
  19. 19.
    Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1994) Carbon 32:1523CrossRefGoogle Scholar
  20. 20.
    Bouillon E, Langlais F, Pailler R, Naslain R, Cruege F, Huong PV, Sarthou JC, Delpuech A, Laffon C, Lagarde P, Monthioux M, Oberlin A (1991) J Mater Sci 26:1333. doi: https://doi.org/10.1007/BF00544474 CrossRefGoogle Scholar
  21. 21.
    Krishnarao RV, Mahajan YR (1996) Ceram Int 22:353CrossRefGoogle Scholar
  22. 22.
    Miyagawa S, Baba K, Ikeyama M, Saitoh K, Nakao S, Miyagawa Y (1997) Nucl Instrum Methods Phys Res B 127/128:651CrossRefGoogle Scholar
  23. 23.
    Hata T, Castro V, Fujisawa M, Imamura Y, Bonnamy S, Bronsveld P, Kikuchi H (2005) Fuller Nanotube Carbon Nanostruct 13:107CrossRefGoogle Scholar
  24. 24.
    Zollfrank C, Sieber H (2005) J Am Ceram Soc 88:51CrossRefGoogle Scholar
  25. 25.
    Parfeneva LS, Orlova TS, Kartenko NF, Sharenkova NV, Smirnov BI, Smirnov IA, Misiorek H, Jezowski A, Mucha J, de Arellano-Lopez AR, Martinez-Fernandez J, Varela-Feria FM (2006) Phys Solid State 48:441CrossRefGoogle Scholar
  26. 26.
    Chung DDL (2002) J Mater Sci 37:1475. doi: https://doi.org/10.1023/A:1014915307738 CrossRefGoogle Scholar
  27. 27.
    Xie X, Goodell B, Qian Y, Peterson M, Jellison J (2008) Holzforschung 62:591CrossRefGoogle Scholar
  28. 28.
    Orlova TS, Smirnov BI, de Arellano-Lopez AR, Martinez Fernandez J, Sepulveda R (2005) Phys Solid State 47:229CrossRefGoogle Scholar
  29. 29.
    Ito M, Tanaka T, Hara S (2004) J Appl Phys 95:6209CrossRefGoogle Scholar
  30. 30.
    Fujita T, Saito Y, Yoshida H, Masahiro M (2006) In: Proceedings of the 3rd International Symposium on Sustainable Energy System 2006, KyotoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joko Sulistyo
    • 1
    • 2
  • Toshimitsu Hata
    • 1
    Email author
  • Hiroyuki Kitagawa
    • 3
  • Paul Bronsveld
    • 4
  • Masashi Fujisawa
    • 5
  • Kozo Hashimoto
    • 6
  • Yuji Imamura
    • 1
  1. 1.Laboratory of Innovative Humano-habitability, Research Institute for Sustainable HumanosphereKyoto UniversityKyotoJapan
  2. 2.Department of Forest Products Technology, Faculty of ForestryGadjah Mada UniversityBulaksumur, YogyakartaIndonesia
  3. 3.Department of Materials ScienceShimane UniversityMatsue, ShimaneJapan
  4. 4.Deparment of Applied PhysicsUniversity of GroningenGroningenThe Netherlands
  5. 5.Institute of Wood TechnologyAkita Prefectural UniversityAkitaJapan
  6. 6.Laboratory of Applied Radio Engineering for Humanosphere, Research Institute for Sustainable HumanosphereKyoto UniversityKyotoJapan

Personalised recommendations