Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 566–569 | Cite as

Solution-processed organic field-effect transistors patterned by self-assembled monolayers of octadecyltrichlorosilane and phenyltrichlorosilane

  • Sung-Jin KimEmail author
  • Kyungsun Ryu
  • Seung Wook Chang
Letter

Organic field-effect transistors (OFETs) have gathered great interest in the last decade because of the potential application to low-cost printed electronics and large-area flexible electronic devices [1, 2]. In particular, fabrication techniques such as ink-jet printing, micro-contact printing, and roll-to-roll processing of polymeric functional materials enable the realization of high performance solution-processed OFETs [3, 4, 5, 6, 7]. Recently, many groups have observed that the performance of OFETs can be significantly improved by treating the insulator surface with self-assembled monolayer (SAMs) such as octadecyltrichlorosilane (OTS) [8, 9, 10], fluoroalkyltrichlorosilane (FTS) [11], and phenyltrichlorosiane (PTCS) [12, 13, 14]. SAMs modification of dielectric surface provides emerging applications for semiconductor molecules to achieve optimum molecular ordering and crystallinity for charge carrier transport. For example, SAMs can enhance a wettability of the gate dielectric...

Keywords

Organic Semiconductor Pentacene Rubrene Octadecyltrichlorosilane Polymeric Semiconductor 

Notes

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2007-357-D00106).

References

  1. 1.
    Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99CrossRefGoogle Scholar
  2. 2.
    Ling MM, Bao Z (2004) Chem Mater 16:4824CrossRefGoogle Scholar
  3. 3.
    Chabinyc ML, Salleo A (2004) Chem Mater 16:4509CrossRefGoogle Scholar
  4. 4.
    Briseno AL, Mannsfeld SCB, Ling MM, Liu S, Tseng RJ, Reese C, Roberts ME, Yang Y, Wudl F, Bao Z (2006) Nature 444:913CrossRefGoogle Scholar
  5. 5.
    Chabinyc ML, Salleo A, Wu Y, Liu P, Ong BS, Heeney M, McCulloch I (2004) J Am Chem Soc 126:13928CrossRefGoogle Scholar
  6. 6.
    Facchetti A, Yoon M-H, Marks TJ (2006) J Am Chem Soc 128:4928CrossRefGoogle Scholar
  7. 7.
    Menard E, Bilhaut L, Zaumseil J, Rogers JA (2004) Langmuir 20:6871CrossRefGoogle Scholar
  8. 8.
    Lee HS, Kim DH, Cho JH, Hwang M, Jang Y, Cho K (2008) J Am Chem Soc 130:10556CrossRefGoogle Scholar
  9. 9.
    Masuda Y, Kinoshita N, Sato F, Koumoto K (2006) Cryst Growth Des 6:75CrossRefGoogle Scholar
  10. 10.
    Seo JH, Chang GS, Wilks RG, Whang CN, Chae KH, Cho S, Yoo K-H, Moewes A (2008) J Phys Chem B 112:16266CrossRefGoogle Scholar
  11. 11.
    Calhoun MF, Sanchez J, Olaya D, Gershenson ME, Podzorov V (2008) Nat Mater 7:84CrossRefGoogle Scholar
  12. 12.
    Li Y, Wu Y, Ong BS (2006) Macromolecules 39:6521CrossRefGoogle Scholar
  13. 13.
    Liu Z, Becerril HA, Roberts ME, Nishi Y, Bao Z (2009) IEEE Trans Electron Device 56:176CrossRefGoogle Scholar
  14. 14.
    Oberhoff D, Pernstich KP, Gundlach DJ, Batlogg B (2007) IEEE Trans Electron Device 54:17CrossRefGoogle Scholar
  15. 15.
    Umedaa T, Tokito S, Kumaki D (2008) J Appl Phys 101:054517CrossRefGoogle Scholar
  16. 16.
    Wang JZ, Zheng ZH, Li HW, Huck WTS, Sirringhaus H (2004) Nat Mater 3:171CrossRefGoogle Scholar
  17. 17.
    Kim SH, Choi D, Chung DS, Yang C, Jang J, Park CE, Park S-HK (2008) Appl Phys Lett 93:113306CrossRefGoogle Scholar
  18. 18.
    Park SK, Mourey DA, Subramanian S, Anthony JE, Jackson TN (2008) Adv Mater 20:4145Google Scholar
  19. 19.
    Na Y-J, Lee S-W, Choi W, Kim S-J, Lee S-D (2009) Adv Mater 21:537CrossRefGoogle Scholar
  20. 20.
    Kim S-J, Ahn T, Suh MC, Yu C-J, Kim D-W, Lee S-D (2005) Jpn J Appl Phys 44:L1109CrossRefGoogle Scholar
  21. 21.
    Kim S-J, Beveridge H, Koberstein JT, Kymissis I (2009) J Vac Sci Technol B 27:1057CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Organic Photonics and Electronics (COPE) and School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Electrical EngineeringColumbia UniversityNew YorkUSA
  3. 3.Samsung Mobile Display Co., LtdYongin CityKorea

Personalised recommendations