Journal of Materials Science

, 45:1056 | Cite as

In situ high-temperature X-ray and neutron diffraction of Cu–Mn oxide phases

  • Ping Wei
  • Mario Bieringer
  • Lachlan M. D. Cranswick
  • Anthony Petric


Copper–manganese oxides were analyzed by in situ high-temperature powder neutron and X-ray diffraction to investigate their crystal structure. Cu–Mn spinel was found to form a continuous solid solution with cubic symmetry between Mn3O4 and Cu2MnO4. A high-temperature phase with approximate composition Cu5Mn4O9 was shown to have hexagonal symmetry. The cation distribution and lattice parameters of Cu–Mn spinel were resolved through Rietveld refinement of in situ neutron diffraction data. The results demonstrated that the Cu ion has a lower octahedral site preference than manganese ions, and quenching is not a reliable method to determine the equilibrium structure in the system.


Neutron Diffraction Octahedral Site CoFe2O4 Rietveld Refinement Tetrahedral Site 



We wish to thank the Natural Sciences and Engineering Research Council of Canada for financial support. The authors also acknowledge I. David Brown, James Britten, Shahab Derakhshan, and Wenhe Gong for their assistance in this study.


  1. 1.
    Bessekhouad Y, Gabes Y, Bouguelia A, Trari M (2007) J Mater Sci 42:6469. doi: 10.1007/s10853-006-1250-x CrossRefADSGoogle Scholar
  2. 2.
    Waskowska A, Gerward L, Olsen JS, Steenstrup S, Talik E (2001) J Phys Condens Matter 13:2549CrossRefADSGoogle Scholar
  3. 3.
    Fierro G, Ferraris G, Dragone R, Jacono LL, Faticanti M (2006) Catal Today 116:38CrossRefGoogle Scholar
  4. 4.
    Gillot B, Kharroubi M, Metz R, Legros R, Rousset A (1991) Phys Status Solidi A 124:317CrossRefGoogle Scholar
  5. 5.
    Vandenberghe RE, Brabers VAM, Robbrecht GG (1973) Phys Status Solidi A 16:K117CrossRefGoogle Scholar
  6. 6.
    Vandenberghe RE, Robbrecht GG (1973) Mater Res Bull 8:571CrossRefGoogle Scholar
  7. 7.
    Papavasiliou J, Avgouropoulos G, Ioannides T (2005) Catal Commun 6:497CrossRefGoogle Scholar
  8. 8.
    Trari M, Topfer J, Dordor P, Grenier JC, Pouchard M, Doumerc JP (2005) J Solid State Chem 178:2751CrossRefADSGoogle Scholar
  9. 9.
    Broemme ADD, Brabers VAM (1985) Solid State Ionics 16:171CrossRefGoogle Scholar
  10. 10.
    Martin BE, Petric A (2007) J Phys Chem Solids 68:2262CrossRefADSGoogle Scholar
  11. 11.
    Sinha APB, Sanjana NR, Biswas AB (1958) J Phys Chem 62:191CrossRefGoogle Scholar
  12. 12.
    Miyahara S (1962) J Phys Soc Japan 17:181Google Scholar
  13. 13.
    Blasse G (1966) J Phys Chem Solids 27:383CrossRefADSGoogle Scholar
  14. 14.
    Buhl R (1969) J Phys Chem Solids 30:805CrossRefADSGoogle Scholar
  15. 15.
    Dubrovina IN, Balakirev VF, Antonov AV (2001) Inorg Mater 37:76CrossRefGoogle Scholar
  16. 16.
    Dubrovina IN, Antonov AV, Balakirev VF, Chufarov GI (1981) Dokl Aakd Nauk SSSR 260:658Google Scholar
  17. 17.
    Kharroubi M, Gillot B, Legros R, Metz R, Vajpei AC, Rousset A (1991) J Less-Common Met 175:279CrossRefGoogle Scholar
  18. 18.
    Driessens FCM, Rieck GD (1967) Z Anorg Allgem Chem 351:48CrossRefGoogle Scholar
  19. 19.
    Gillot B, Buguet S, Kester E (1997) J Mater Chem 7:2513CrossRefGoogle Scholar
  20. 20.
    Lenglet M, Huysser AD, Kasperek J, Bonnelle JP, Durr J (1985) Mater Res Bull 20:745CrossRefGoogle Scholar
  21. 21.
    Vandenberghe RE, Robbrecht GG, Brabers VAM (1976) Phys Status Solidi A 34:583CrossRefGoogle Scholar
  22. 22.
    Radhakrishnan NK, Biswas AB (1977) Phys Status Solidi A 44:45CrossRefGoogle Scholar
  23. 23.
    Vandenberghe RE, Legrand E, Scheerilinck D, Brabers VAM (1976) Acta Cryst B32:2796Google Scholar
  24. 24.
    Cranswick LMD, Donaberger RL (2008) J Appl Crystallogr 41:1038CrossRefGoogle Scholar
  25. 25.
    Cranswick LMD, Donaberger R, Swainson IP, Tun Z (2008) J Appl Crystallogr 41:373CrossRefGoogle Scholar
  26. 26.
    Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748Google Scholar
  27. 27.
    Toby BH (2001) J Appl Crystallogr 34:210CrossRefGoogle Scholar
  28. 28.
    Shannon RD (1976) Acta Crystallogr A 32:751CrossRefADSGoogle Scholar
  29. 29.
    Dorris SE, Mason TO (1988) J Am Ceram Soc 71:379CrossRefGoogle Scholar
  30. 30.
    Levin EM, Roth RS (1964) J Res NBS 68A:197Google Scholar
  31. 31.
    Maunders C, Martin BE, Wei P, Petric A, Botton GA (2008) Solid State Ionics 179:718CrossRefGoogle Scholar
  32. 32.
    Zaslavskii AI, Plakhtii VP (1969) Sov Phys Solid State 11:3Google Scholar
  33. 33.
    Metz R (2000) J Mater Sci 35:4705. doi: 10.1023/A:1004851022668 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ping Wei
    • 1
  • Mario Bieringer
    • 2
  • Lachlan M. D. Cranswick
    • 3
  • Anthony Petric
    • 1
  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Department of ChemistryUniversity of ManitobaWinnipegCanada
  3. 3.Canadian Neutron Beam CentreNational Research Council CanadaONCanada

Personalised recommendations