Journal of Materials Science

, Volume 45, Issue 4, pp 1008–1016 | Cite as

Polyacrylamide and poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid)-silica composite nanogels through in situ microemulsion polymerisation

  • Pallavi Bhardwaj
  • Vaishali Singh
  • Uttam Kumar MandalEmail author
  • Saroj Aggarwal


Nanosize monodisperse composite particles of polyacrylamide (PAM) and poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid)-silica [Poly(AM-co-AMPSA)-SiO2] were prepared by water-in-oil in situ microemulsion polymerisation without surface treatment of silica. The synthesised composite particles were produced with controllable sizes ranging from 44 to 77 nm in diameter. Presence of silica filler in the nanoreactors facilitates the formation of well-defined discrete particles. The prepared nanocomposites were characterised by dynamic light scattering, transmission electron microscope, Fourier transform infrared spectrophotometer, thermogravimetric analyzer, differential scanning calorimeter, scanning electron microscope and X-ray diffraction. The spectroscopic result shows strong interactions of silica nanoparticles with sulphonic groups of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA). The onset degradation temperature is increased from 227 to 262 °C in copolymer–silica composite as compared to polyacrylamide–silica (PAM–SiO2) which indicates improved thermal stability. The shifting of glass transition temperature from 194 to 203 °C in copolymeric composite nanogels further confirms the existence of strong interactions of silica filler with poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid) [Poly(AM-co-AMPSA)] chains. Also the chemical composition of polymeric chains and the affinity of polymer chains and silica influenced the morphology of nanogels.


Dynamic Light Scattering Differential Scanning Calorimeter Silica Nanoparticles Composite Particle Sulfonic Group 


  1. 1.
    Yang M, Dan Y (2005) Colloid Polym Sci 284:243CrossRefGoogle Scholar
  2. 2.
    Beecroft LL, Ober CK (1997) Chem Mater 9:1302CrossRefGoogle Scholar
  3. 3.
    Rigbi Z (1980) Adv Polym Sci 36:21CrossRefGoogle Scholar
  4. 4.
    Ettlinger M (1989) Schriftenreihe Pigmente 56:2Google Scholar
  5. 5.
    Li ZZ, Ding HM, Wang JX, Chen JF (2006) J Nanosci Nanotechnol 6:3139CrossRefGoogle Scholar
  6. 6.
    Slowing II, Trewyn BG, Giri S, Lin VS-Y (2007) Adv Funct Mater 17:1225CrossRefGoogle Scholar
  7. 7.
    Nakamura M, Shono M, Ishimura K (2007) Anal Chem 79:6507CrossRefGoogle Scholar
  8. 8.
    Yang J, Lee J, Kang J, Chung CH, Lee K, Suh JS, Yoon HG, Huh YM, Haam S (2008) Nanotechnology 19:1Google Scholar
  9. 9.
    Althues H, Henle J, Kaskel S (2007) Chem Soc Rev 36:1454CrossRefGoogle Scholar
  10. 10.
    Sanchez C, Julian B, Belleville P, Popall M (2005) J Mater Chem 15:3559CrossRefGoogle Scholar
  11. 11.
    Pomogailo AD (2000) Russ Chem Rev 69:53CrossRefGoogle Scholar
  12. 12.
    Radhakrishnan B, Ranjan R, Brittain WJ (2006) Soft Matter 2:386CrossRefGoogle Scholar
  13. 13.
    Gao Y, Choudhury NR (2003) In: Nalwa HS (ed) Handbook of organic-inorganic hybrid materials and nanocomposites, vol 1. American Scientific Publishers, Stevenson Ranch, CA, p 271Google Scholar
  14. 14.
    Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) IEEE Trans Dielectr Electr Insul 12:629CrossRefGoogle Scholar
  15. 15.
    Pavel FM (2004) J Disper Sci Technol 25:1CrossRefGoogle Scholar
  16. 16.
    Yan F, Texter J (2006) Soft Matter 2:109CrossRefGoogle Scholar
  17. 17.
    Gianini M, Caseri WR, Suter UW (2001) J Phys Chem B 105:7399CrossRefGoogle Scholar
  18. 18.
    Puig LJ, Sanchez-Diaz JC, Villacampa M, Mendizabal E, Puig JE, Aguiar A, Katime I (2001) J Colloid Interface Sci 235:278CrossRefGoogle Scholar
  19. 19.
    Fernandez VVA, Tepale N, Sanchez-Diaz JC, Mendizabal E, Puig JE, Soltero JFA (2006) Colloid Polym Sci 284:387CrossRefGoogle Scholar
  20. 20.
    Kaneda I, Sogabe A, Nakajima H (2004) J Colloid Interface Sci 275:450CrossRefGoogle Scholar
  21. 21.
    Cheng W, Wang Z, Ren C, Chen H, Tang T (2007) Mater Lett 61:3193CrossRefGoogle Scholar
  22. 22.
    Xu P, Wang H, Tong R, Du Q, Zhong W (2006) Colloid Polym Sci 284:1435Google Scholar
  23. 23.
    Yang J, Hu D, Fang Y, Bai C, Wang H (2006) Chem Mater 18:4902CrossRefGoogle Scholar
  24. 24.
    Ranjan R, Brittain WJ (2007) Macromolecules 40:6217CrossRefGoogle Scholar
  25. 25.
    Bhardwaj P, Singh S, Singh V, Aggarwal S, Mandal UK (2008) Int J Polym Mater 57:404CrossRefGoogle Scholar
  26. 26.
    Yu J, Yu J, Gao YF, Guo ZX (2001) Chin J Polym Sci 20:71Google Scholar
  27. 27.
    Chow PY, Gan LM (2004) J Nanosci Nanotechnol 4:197Google Scholar
  28. 28.
    Xu P, Wang HT, Tong R, Du QG, Zhong W (2006) Colloid Polym Sci 284:755CrossRefGoogle Scholar
  29. 29.
    Greesh N, Hartmann PC, Cloete V, Sanderson RD (2008) J Colloid Interface Sci 319:2CrossRefGoogle Scholar
  30. 30.
    Mc Allister K, Sazani P, Adam M, Cho MJ, Rubinstein M, Samulski RJ, Desimone JD (2002) J Am Chem Soc 124:15198CrossRefGoogle Scholar
  31. 31.
    Buruaga ASD, Cal JDL, Asua JM (1999) J Polym Sci Part A: Polym Chem 37:2167CrossRefGoogle Scholar
  32. 32.
    Buruaga ASD, Capek I, Cal JDL, Asua JM (1998) J Polym Sci Part A: Polym Chem 36:737CrossRefGoogle Scholar
  33. 33.
    Voorn DJ, Ming W, van Herk AM (2006) Macromolecules 39:2137CrossRefGoogle Scholar
  34. 34.
    Zhang C, Easteal AJ (2007) J Appl Polym Sci 104:1723CrossRefGoogle Scholar
  35. 35.
    Lu X, Mi Y (2005) Macromolecules 38:839CrossRefGoogle Scholar
  36. 36.
    Wu Z, Lee K, Lin Y, Lan X, Huang L (2003) J Non-Cryst Solid 320:168CrossRefGoogle Scholar
  37. 37.
    Jang J, Park H (2002) J Appl Polym Sci 83:1817CrossRefGoogle Scholar
  38. 38.
    Elbatal HA, Azooz MA, Khalil EMA, Monem AS, Hamdy YM (2003) Mater Chem Phys 80:599CrossRefGoogle Scholar
  39. 39.
    Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  40. 40.
    Sabhapondit A, Borthakur A, Haque I (2003) J Appl Polym Sci 87:1869CrossRefGoogle Scholar
  41. 41.
    Parker WO Jr, Lezzi A (1993) Polymer 34:4913CrossRefGoogle Scholar
  42. 42.
    Aggour YA (1994) Polym Degrad Stab 44:71CrossRefGoogle Scholar
  43. 43.
    Aggour YA (1998) Polym Degrad Stab 60:317CrossRefGoogle Scholar
  44. 44.
    Yang-Chuan K, Guang-Yao W, Yi W (2008) Eur Polym J 44:2448CrossRefGoogle Scholar
  45. 45.
    Vilcu R, Irinei F, Ionescu-Bujor J, Olteanu M, Demetrescu I (1985) J Therm Anal 30:495CrossRefGoogle Scholar
  46. 46.
    Van Dyke JD, Kasperski KL (1993) J Polym Sci Part A: Polym Chem 31:1807CrossRefGoogle Scholar
  47. 47.
    Zhang C, Easteal AJ (2003) J Appl Polym Sci 89:1322CrossRefGoogle Scholar
  48. 48.
    Amalvy JI, Percy MJ, Armes SP (2001) Langmuir 17:4770CrossRefGoogle Scholar
  49. 49.
    Petrovic ZS, Javni I, Waddon A, Banhegyi GJ (2000) J Appl Polym Sci 76:133CrossRefGoogle Scholar
  50. 50.
    Biswal DR, Singh RP (2004) Carbohydr Polym 57:379CrossRefGoogle Scholar
  51. 51.
    Yan F, Zheng C, Zhai X, Zhao D (1998) J Appl Polym Sci 67:747CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pallavi Bhardwaj
    • 1
  • Vaishali Singh
    • 1
  • Uttam Kumar Mandal
    • 2
    Email author
  • Saroj Aggarwal
    • 1
  1. 1.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityDelhiIndia
  2. 2.University School of Chemical TechnologyGuru Gobind Singh Indraprastha UniversityDelhiIndia

Personalised recommendations