Advertisement

Journal of Materials Science

, Volume 45, Issue 4, pp 999–1007 | Cite as

Calcium-containing inorganic polymers as potential bioactive materials

  • Kenneth J. D. MacKenzieEmail author
  • Nils Rahner
  • Mark E. Smith
  • Alan Wong
Article

Abstract

In vitro studies are reported of the behaviour of potassium aluminosilicate inorganic polymers containing 10 wt% Ca(OH)2, nanostructured calcium silicate and Ca3(PO4)2 exposed to simulated body fluid (SBF). Heating to 600 °C lowers the alkalinity of Ca3(PO4)2-containing samples, but their X-ray powder diffraction characteristics, 27Al, 29Si and 43Ca MAS NMR spectra are unchanged by heating. Exposure of the heated compounds to SBF usually results in the formation of the crystalline biomineral phases hydroxylapatite and hydroxycarbonate apatite in the samples containing Ca(OH)2 and Ca3(PO4)2, but scanning electron microscopy/energy dispersive spectroscopy suggests that all the samples in the present study form calcium phosphates on exposure to SBF. This conclusion is also consistent with the removal of P from the SBF by all the samples. The concentrations of Al leached from the samples containing nanostructured calcium silicate and Ca3(PO4)2 (0.05 and 0.47 ppm, respectively) are acceptable for biomaterials use, but apart from the Ca3(PO4)2-containing sample, which takes up Ca from the SBF, the levels of Ca released into the SBF by the other samples are well in excess of the published optimum amount for stimulation of new bone growth by gene transcription in osteoblasts. Only the calcium silicate-containing samples release Si into the SBF, but in a concentration that falls short of the optimum amount. The strength of all the present compounds after heating is probably adequate for applications as biomaterials, but the Ca3(PO4)2-containing compound shows slightly greater strength. Thus, on balance, the Ca3(PO4)2-containing compound appears to be the most promising as a bioactive material.

Keywords

Geopolymer Energy Dispersive Spectroscopy Calcium Phosphate Simulated Body Fluid Calcium Silicate 

Notes

Acknowledgements

We are indebted to James Johnston and Thomas Borrmann for kindly supplying the nanostructured calcium silicate and to David Flynn for assistance with the electron microscopy. MES thanks the University of Warwick, EPSRC, AWM and the ERDF for partial funding of NMR infrastructure at Warwick. AW thanks NSERC for a postdoctoral research fellowship.

References

  1. 1.
    MacKenzie KJD (2009) In: Provis JL, Van Deventer JSJ (eds) Geopolymers: structures, processing, properties and industrial applications, chap 14. Taylor & Francis, LondonGoogle Scholar
  2. 2.
    Davidovits J (1991) J Thermal Anal 37:1633CrossRefGoogle Scholar
  3. 3.
    Davidovits J (2008) Geopolymer chemistry and applications. Geopolymere Institut, St QuentinGoogle Scholar
  4. 4.
    Martin S, Derrien AC, Oudadesse H, Chauvel-Lebret D, Cathelineau G (2005) Eur Cells Mater 9:71Google Scholar
  5. 5.
    Oudadesse H, Derrien AC, Lefloch M, Davidovits J (2007) J Mater Sci 42:3092. doi: https://doi.org/10.1007/s10853-006-0524-7 CrossRefGoogle Scholar
  6. 6.
    Oudadesse H, Derrien AC, Mami M, Martin S, Cathlineau G, Yahia L (2007) Biomed Mater 2:59CrossRefGoogle Scholar
  7. 7.
    Yap AUG, Pek YS, Kumar RA, Cheang P, Khor KA (2002) Biomaterials 23:955CrossRefGoogle Scholar
  8. 8.
    Geyer G, Baier G, Helms J (1998) J Laryngol Otol 112:344CrossRefGoogle Scholar
  9. 9.
    Hanston P, Mathieu P, Gersdorff M, Sindic CJM, Lauwerys R (1994) Lancet 344:1647Google Scholar
  10. 10.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2001) J Biomed Mater Res 55:151CrossRefGoogle Scholar
  11. 11.
    MacKenzie KJD, Smith ME, Wong A (2007) J Mater Chem 17:5090CrossRefGoogle Scholar
  12. 12.
    Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003) J Biomed Mater Res 65A:188CrossRefGoogle Scholar
  13. 13.
    Kwak KT, Prasad S, Yao Z, Grandinetti PJ, Sachleben JR, Emsley L (2001) J Magn Reson 150:71CrossRefGoogle Scholar
  14. 14.
    Madhu PK, Pike KJ, Dupree R, Levitt MH, Smith ME (2003) Chem Phys Lett 367:150CrossRefGoogle Scholar
  15. 15.
    Gervais C, Laurencin D, Wong A, Pourpoint F, Labram J, Woodward B, Howes AP, Pike KJ, Dupree R, Mauri F, Bonhomme C, Smith ME (2008) Chem Phys Lett 464:42CrossRefGoogle Scholar
  16. 16.
    Kerber MK, Wereszczak AA, Jenkins MG (1998) Fracture strength, chap 4. Marcel Dekker Inc, New YorkGoogle Scholar
  17. 17.
    MacKenzie KJD, Smith ME (2002) Multinuclear solid state NMR of inorganic materials. Pergamon Press, OxfordGoogle Scholar
  18. 18.
    Laurencin D, Wong A, Hanna JV, Dupree R, Smith ME (2008) J Am Chem Soc 130:2412CrossRefGoogle Scholar
  19. 19.
    Laurencin D, Wong A, Dupree R, Smith ME (2008) Magn Reson Chem 46:347CrossRefGoogle Scholar
  20. 20.
    Heimann RB (2002) CMU J 1:23Google Scholar
  21. 21.
    Thompson ID, Hench LL (1998) Proc Inst Mech Eng 212H:127CrossRefGoogle Scholar
  22. 22.
    Bresciani E, Barata T, Fagundes TC, Adachi A, Terrin MM, Navarro MF (2004) J Appl Oral Sci 4:344CrossRefGoogle Scholar
  23. 23.
    Karpilovskii LP, Letskaya NV (1978) Steklo Keram 9:29Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kenneth J. D. MacKenzie
    • 1
    Email author
  • Nils Rahner
    • 1
    • 3
  • Mark E. Smith
    • 2
  • Alan Wong
    • 2
    • 4
  1. 1.MacDiarmid Institute for Advanced Materials and NanotechnologyVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Department of PhysicsWarwick UniversityCoventryUK
  3. 3.Institute of MaterialsGerman Aerospace CenterKolnGermany
  4. 4.Laboratoire de Structure et Dynamique par Résonance Magnétique Service de Chemie MoléculaireGif-sur-YvetteFrance

Personalised recommendations