Advertisement

Journal of Materials Science

, Volume 45, Issue 4, pp 979–986 | Cite as

l-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution

  • Jia-Jun FuEmail author
  • Su-Ning Li
  • Lin-Hua Cao
  • Ying Wang
  • Lian-He Yan
  • Lu-De Lu
Article

Abstract

The inhibition behavior of low carbon steel in 1 M HCl by l-tryptophan was investigated with weight loss experiment and Tafel polarization curve in the used temperature range (298–328 K). All the experimental results show that l-tryptophan has excellent corrosion inhibition performance and the most effective concentration of inhibitor is 1 × 10−2 mol L−1. The Tafel polarization curve results indicate that l-tryptophan acts more as a cathodic than anodic inhibitor. The adsorption of l-tryptophan on the surface of low carbon steel obeys the Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The adsorption behavior of l-tryptophan at Fe surface (1 1 0) was also investigated by the molecule dynamics simulation method and density functional theory. The results indicated that the l-tryptophan could adsorb firmly on the Fe surface through the indole ring with π-electrons and nitrogen/oxygen atom with lone-pair electrons in its molecule.

Keywords

Corrosion Rate Inhibition Efficiency Corrosion Current Density Weight Loss Measurement Indole Ring 

References

  1. 1.
    Demadis KD, Mavredaki E, Stathoulopoulou A, Neofotistou E, Mantzaridis C (2007) Desalination 213:38CrossRefGoogle Scholar
  2. 2.
    Behpour M, Ghoreishi SM, Gandomi-Niasar A, Soltani N, Salavati-Niasari M (2009) J Mater Sci 44(10):2444. doi: https://doi.org/10.1007/s10853-009-3309-y CrossRefGoogle Scholar
  3. 3.
    El-Meligi AA, Turgoose S, Ismail AA, Sanad SH (2000) Br Corros J 35(1):75CrossRefGoogle Scholar
  4. 4.
    Choi DJ, You SJ, Kim JG (2002) Mater Sci Eng A 335(1–2):228CrossRefGoogle Scholar
  5. 5.
    Ketsetzi A, Stathoulopoulou A, Demadis KD (2008) Desalination 223(1–3):487CrossRefGoogle Scholar
  6. 6.
    Umoren SA, Obot IB, Obi-Egbedi NO (2009) J Mater Sci 44(1):274. doi: https://doi.org/10.1007/s10853-008-3045-8 CrossRefGoogle Scholar
  7. 7.
    Badawy WA, Ismail KM, Fathi AM (2006) Electrochim Acta 51(20):4182CrossRefGoogle Scholar
  8. 8.
    Morad MS (2008) J Appl Electrochem 38(11):1509CrossRefGoogle Scholar
  9. 9.
    Olivares O, Likhanova NV, Gómez B, Navarrete J, Llanos-Serrano ME, Arce E, Hallen JM (2006) Appl Surf Sci 252(8):2894CrossRefGoogle Scholar
  10. 10.
    Olivares-Xometl O, Likhanova NV, Domínguez-Aguilar MA, Arce E, Dorantes H, Arellanes-Lozada P (2008) Mater Chem Phys 110(2–3):344CrossRefGoogle Scholar
  11. 11.
    Barouni K, Bazzi L, Salghi R, Mihit M, Hammouti B, Albourine A, El Issami S (2008) Mater Lett 62(19):3325CrossRefGoogle Scholar
  12. 12.
    Ismail KM (2007) Electrochim Acta 52(28):7811CrossRefGoogle Scholar
  13. 13.
    Liu GH, Xi DL, Li Y, Lu Z (2003) Corros Prot 24(11):480Google Scholar
  14. 14.
    Silverman DC, Kalota DJ, Stover FS (1995) Corrosion 51(11):818CrossRefGoogle Scholar
  15. 15.
    Moretti G, Guidi F (2002) Corros Sci 44(9):1995CrossRefGoogle Scholar
  16. 16.
    Ashassi-Sorkhabi H, Ghasemi Z, Seifzadeh D (2005) Appl Surf Sci 249(1–4):408CrossRefGoogle Scholar
  17. 17.
    Gece G (2008) Corros Sci 50(11):2981CrossRefGoogle Scholar
  18. 18.
    Khaled KF, Fadl-Allah SA, Hammouti B (2009) Mater Chem Phys 117(1):148CrossRefGoogle Scholar
  19. 19.
    Khaled KF (2009) Electrochim Acta 54(18):4345CrossRefGoogle Scholar
  20. 20.
    Rao VS, Singhal LK (2009) J Mater Sci 44(9):2327. doi: https://doi.org/10.1007/s10853-008-2976-4 CrossRefGoogle Scholar
  21. 21.
    Shukla SK, Quraishi MA (2009) Corros Sci. doi:  https://doi.org/10.1016/j.corsci.2009.05.020 CrossRefGoogle Scholar
  22. 22.
    Aljourani J, Raeissi K, Golozar MA (2009) Corros Sci 51(8):1836CrossRefGoogle Scholar
  23. 23.
    Prabhu RA, Venkatesha TV, Shanbhag AV, Kulkarni GM, Kalkhambkar RG (2008) Corros Sci 50(12):3356CrossRefGoogle Scholar
  24. 24.
    de Souza FS, Spinelli A (2009) Corros Sci 51(3):642CrossRefGoogle Scholar
  25. 25.
    Li WH, He Q, Zhang ST, Pei CL, Hou BR (2008) J Appl Electrochem 38(3):289CrossRefGoogle Scholar
  26. 26.
    Avci G (2008) Mater Chem Phys 112(1):234CrossRefGoogle Scholar
  27. 27.
    Castellan GW (1984) Physical chemistry, 2nd edn. Addison-Wesley, Reading, MAGoogle Scholar
  28. 28.
    Olivares-Xometl O, Likhanova NV, Martínez-Palou R, Domínguez-Aguilar MA (2009) Mater Corros 60(1):14CrossRefGoogle Scholar
  29. 29.
    Babić-Samardžija K, Lupu C, Hackerman N, Barron AR, Luttge A (2005) Langmuir 21(26):12187CrossRefGoogle Scholar
  30. 30.
    Lashkari M, Arshadi MR (2004) Chem Phys 299(1):131CrossRefGoogle Scholar
  31. 31.
    Khaled KF (2008) Electrochim Acta 53(9):3484CrossRefGoogle Scholar
  32. 32.
    Khaled KF, Amin MA (2009) Corros Sci 51(9):1964CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jia-Jun Fu
    • 1
    Email author
  • Su-Ning Li
    • 1
  • Lin-Hua Cao
    • 1
  • Ying Wang
    • 1
  • Lian-He Yan
    • 1
  • Lu-De Lu
    • 1
  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations