Advertisement

Journal of Materials Science

, Volume 45, Issue 4, pp 961–968 | Cite as

Low-temperature fabrication of macroporous scaffolds through foaming and hydration of tricalcium silicate paste and their bioactivity

  • Zhiguang Huan
  • Jiang ChangEmail author
  • Jie Zhou
Article

Abstract

A low-temperature fabrication method for highly porous bioactive scaffolds was developed. The two-step method involved the foaming of tricalcium silicate cement paste and hydration to form calcium silicate hydrate and calcium hydroxide. Scaffolds with a combination of interconnected macro- and micro-sized pores were fabricated by making use of the decomposition of a hydrogen peroxide (H2O2) solution that acted as a foaming agent and through the hydration of tricalcium silicate cement. It was found possible to control the porosity and pore sizes by adjusting the concentration of the H2O2 solution. The in vitro bioactivity of the highly porous scaffolds was investigated by immersion in simulated body fluid (SBF) for 7 days. Hydroxyapatite (HAp) was formed on the surface of the scaffolds. Their bioactivity could be expected to be as good as that of tricalcium silicate cement, making the material competent for the bone tissue engineering application.

Keywords

Foam Simulated Body Fluid Calcium Hydroxide Bone Tissue Engineering Calcium Silicate Hydrate 

Notes

Acknowledgements

The research was supported by the National Basic Science Research Program of China (973 Program) (Grant No.: 2005CB522704), Science and Technology Commission of Shanghai Municipality (Grant No.: 08JC1420800) and the Natural Science Foundation of China (Grant 30730034).

References

  1. 1.
    Hutmacher DW (2000) Biomaterials 21:2529CrossRefGoogle Scholar
  2. 2.
    Hench LL (2006) J Mater Sci Mater Med 17:967CrossRefGoogle Scholar
  3. 3.
    Oonishi H, Kutrshitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T (1997) Clin Orthop Relat Res 334:316CrossRefGoogle Scholar
  4. 4.
    Hench LL, Paschall HA (1973) J Biomed Mater Res Symp 4:25CrossRefGoogle Scholar
  5. 5.
    Lin KL, Zhai WY, Ni SY, Chang J, Zeng Y, Qian WJ (2005) Ceram Int 31:323CrossRefGoogle Scholar
  6. 6.
    Gatti AM, Valdre G, Andersson OH (1994) Biomaterials 15:208CrossRefGoogle Scholar
  7. 7.
    Hench LL (1997) Curr Opin Solid State Mater Sci 2:604CrossRefGoogle Scholar
  8. 8.
    Kaufmann EABE, Ducheyne P, Shapiro IM (2004) Tissue Eng 6:19CrossRefGoogle Scholar
  9. 9.
    Binner JGP, Reichert J (1996) J Mater Sci 31:5717. doi: https://doi.org/10.1007/BF01160820 CrossRefGoogle Scholar
  10. 10.
    Lin KL, Chang J, Zeng Y, Qian WJ (2004) Mater Lett 58:2109CrossRefGoogle Scholar
  11. 11.
    Jones JR, Hench LL (2004) J Biomed Mater Res B Appl Biomater 68B:36CrossRefGoogle Scholar
  12. 12.
    Ni SY, Chang J, Chou L (2006) J Biomed Mater Res A 76A:196CrossRefGoogle Scholar
  13. 13.
    Chen ZQZ, Thompson ID, Boccaccini AR (2006) Biomaterials 27:2414CrossRefGoogle Scholar
  14. 14.
    Bretcanu O, Samaille C, Boccaccini AR (2008) J Mater Sci 43:4127. doi: https://doi.org/10.1007/s10853-008-2536-y CrossRefGoogle Scholar
  15. 15.
    Li P, Zhang F, Kokubo T (1992) J Mater Sci Mater Med 3:452CrossRefGoogle Scholar
  16. 16.
    Clupper DC, Hench LL (2003) J Non-Cryst Solids 318:43CrossRefGoogle Scholar
  17. 17.
    FitzGerald SA, Thomas JJ, Neumann DA, Livingston RA (2002) Cem Concr Res 32:409CrossRefGoogle Scholar
  18. 18.
    Bensted J, Barnes P (2002) Structure and performance of cements. Spon press, New YorkGoogle Scholar
  19. 19.
    Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Cem Concr Res 34:1499CrossRefGoogle Scholar
  20. 20.
    Zhao WY, Chang J (2004) Mater Lett 58:2350CrossRefGoogle Scholar
  21. 21.
    Zhao WY, Wang JY, Zhai WY, Wang Z, Chang J (2005) Biomaterials 26:6113CrossRefGoogle Scholar
  22. 22.
    Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP (2004) Biomaterials 25:3671CrossRefGoogle Scholar
  23. 23.
    Wang X, Ruan J, Chen Q (2009) Mater Res Bull 44:1275CrossRefGoogle Scholar
  24. 24.
    ASTM C 20-00 (2005) Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. ASTM International, West Conshohocken, USA. doi: https://doi.org/10.1520/C0020-00R05
  25. 25.
    Kokubo T (1990) J Non-Cryst Solids 120:138CrossRefGoogle Scholar
  26. 26.
    Jones JR, Ehrenfried LM, Hench LL (2006) Biomaterials 27:964CrossRefGoogle Scholar
  27. 27.
    Li XK, Chang J (2006) J Mater Sci 41:4944. doi: https://doi.org/10.1007/s10853-006-0305-3 CrossRefGoogle Scholar
  28. 28.
    Yuan HP, Bruijn JD, Zhang XD, Blitterswijk CA, Groot K (2001) J Biomed Mater Res B Appl Biomater 58:270CrossRefGoogle Scholar
  29. 29.
    Leonardo RT, Consolaro A, Carlos IZ, Leonardo MR (2000) J Endod 26:328CrossRefGoogle Scholar
  30. 30.
    Bae SE, Son JS, Park K, Han DK (2009) J Control Release 133:37CrossRefGoogle Scholar
  31. 31.
    Callcut S, Knowles JC (2002) J Mater Sci Mater Med 13:485CrossRefGoogle Scholar
  32. 32.
    Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T (2002) J Biomed Mater Res 59:110CrossRefGoogle Scholar
  33. 33.
    Loty C, Sautier JM, Boulekbache H, Kokubo T, Kim HM, Forest N (2000) J Biomed Mater Res 49:423CrossRefGoogle Scholar
  34. 34.
    Olmo N, Mratı′n AI, Salinas AJ, Turnay J, Vallet-Reg M, AntoniaLizarbe M (2003) Biomaterials 24:3383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Biomaterials and Tissue Engineering Research Center, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations