Advertisement

Journal of Materials Science

, Volume 45, Issue 4, pp 953–960 | Cite as

Fabrication of sandwich-structured ZnO/reduced graphite oxide composite and its photocatalytic properties

  • Xiaogang Chen
  • Yunqiu HeEmail author
  • Qiong Zhang
  • Linjiang Li
  • Donghu Hu
  • Ting Yin
Article

Abstract

ZnO/RGO (ZnO/Reduced Graphite Oxide) composites with sandwich structure (layered structure) were synthesized at relatively low temperature (60 °C) using ZnSO4 and GO (Graphite Oxide) as precursors. Compared with pure ZnO, ZnO/RGO composites showed greatly enhanced-UV photocatalytic activity for the degradation of the organic dye methyl orange (MO). The structure and morphology of as-prepared samples have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy (FE-SEM), etc. ZnO/RGO composites had a sandwich structure, which would be enhanced when exfoliated GO was used. During the formation the composites, GO was reduced to RGO (graphite-like carbon named as Reduced Graphite Oxide, RGO). The groups which exist in GO (such as C=O, C–O–C) disappeared or obviously weakened, while the groups similar to those in graphite (such as C=C) appeared at the same time. Photoluminescence (PL) spectra of ZnO/RGO showed a significant decline compared to that of pure ZnO, which suggests that the recombination of excited electron–hole pair (e–h+) may be efficiently inhibited by the transfer of electrons to the carbon neighbor. The enhanced-photocatalytic activity for ZnO/RGO can be attributed to the migration effect of photoinduced electrons on the interface of RGO and ZnO. The photocorrosion effect of ZnO was found to be evidently suppressed according to Inductively Coupled Plasma Optical Emission Spectrometry (ICP).

Keywords

Photocatalytic Activity Methyl Orange Degradation Efficiency Graphite Oxide Sandwich Structure 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Number 50672066).

References

  1. 1.
    Petra N, Jirı Z, Josef K, Vıt K, Jirı R (2007) Appl Catal B 79:179Google Scholar
  2. 2.
    Idoko JO, Oluwapomile OO, Robert PF, Steve P, Alison W, Joseph W, Mike Winterbottom J (2007) Catal Today 128:100CrossRefGoogle Scholar
  3. 3.
    Euvananont C, Junin C, Inpor K, Limthongkul P, Thanachayanont C (2008) Ceram Int 34:1067CrossRefGoogle Scholar
  4. 4.
    Xiaodong Z, Haijia S, Yan Z, Tianwei T (2008) J Photochem Photobiol A 199:123CrossRefGoogle Scholar
  5. 5.
    Bircan D, Siddik I (2001) J Photochem Photobiol A 140:263CrossRefGoogle Scholar
  6. 6.
    Yeber MC, Roderiguez J, Freer J, Baeza J, Duran N, Mansilla HD (1999) Chemosphere 39:1679CrossRefGoogle Scholar
  7. 7.
    Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H (1995) J Photochem Photobiol A 85:247CrossRefGoogle Scholar
  8. 8.
    Amina AK, Tahar S, Jean-François P, Pierre B (2001) J Photochem Photobiol A 141:231CrossRefGoogle Scholar
  9. 9.
    Narayanasamy S, Manickavasakam M, Meenakshisundaram S (2008) Catal Commun 9:262CrossRefGoogle Scholar
  10. 10.
    Byrappa K, Dayananda AS, Sajan CP, Basavalingu B, Shayan MB, Soga K, Yoshimura M (2008) J Mater Sci 43:2348. doi: https://doi.org/10.1007/s10853-007-1989-8 CrossRefGoogle Scholar
  11. 11.
    Hongbo F, Tongguang X, Shengbao Z, Yongfa Z (2008) Environ Sci Technol 42:8064CrossRefGoogle Scholar
  12. 12.
    Tamas S, Otto B, Imre D (2005) Carbon 43:3181CrossRefGoogle Scholar
  13. 13.
    Hae KJ, Leyla C, Mei HJ, Per AG, Kevin ES, Young HL (2008) Chem Phys Lett 460:499CrossRefGoogle Scholar
  14. 14.
    Lerf A, Buchsteiner A, Pieper J, Schottl S, Dekany I, Szabo T, Boehm HP (2006) J Phys Chem Solids 67:1106CrossRefGoogle Scholar
  15. 15.
    Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80(6):1339CrossRefGoogle Scholar
  16. 16.
    Tamas S, Etelka T, Erzsebet I, Imre D (2006) Carbon 44:537CrossRefGoogle Scholar
  17. 17.
    Han Y, Lu Y (2008) Synth Met 158(19–20):744CrossRefGoogle Scholar
  18. 18.
    Jiayan X, Yuan H, Lei S, Qingan W, Weicheng F (2002) Carbon 40:2961CrossRefGoogle Scholar
  19. 19.
    Xiao P, Xiao M, Liu PG, Gong KC (2000) Carbon 38:623CrossRefGoogle Scholar
  20. 20.
    Satoshi Y, Hiroaki I (2002) J Mater Chem 12:3773CrossRefGoogle Scholar
  21. 21.
    Tetsuo K, Hiroaki I (2005) J Cryst Growth 283:490CrossRefGoogle Scholar
  22. 22.
    Yinhong Z, Yunqiu H (2007) Front Mater Sci China 1(3):297Google Scholar
  23. 23.
    Reenamole G, Michael KS, Suresh CP (2008) J Phys Chem C 112:13563CrossRefGoogle Scholar
  24. 24.
    Xu F, Yuan Z-Y, Du G-H, Halasa M, SU B-L (2007) Appl Phys A 86:181CrossRefGoogle Scholar
  25. 25.
    Domenech J, Prieto A (1986) J Phys Chem 90(6):1123CrossRefGoogle Scholar
  26. 26.
    Matsuo Y, Hatase K, Sugie Y (1997) Carbon 35:113CrossRefGoogle Scholar
  27. 27.
    Rudd AL, Berslin CB (2000) Electrochim Acta 45:1571CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaogang Chen
    • 1
  • Yunqiu He
    • 1
    Email author
  • Qiong Zhang
    • 1
  • Linjiang Li
    • 1
  • Donghu Hu
    • 1
  • Ting Yin
    • 1
  1. 1.School of Material Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations