Journal of Materials Science

, Volume 45, Issue 4, pp 946–952 | Cite as

Structure and electrochemical hydrogen storage properties of Pd/Mg1−xAlx/Pd thin films prepared by pulsed laser deposition

  • S. Bouhtiyya
  • L. RouéEmail author


Three-layered Pd/Mg1−xAlx/Pd (x = 0, 0.13, 0.21, 0.39) thin films were prepared by means of pulsed laser deposition. In the present Al concentration range, X-ray diffraction analyses showed that the Mg1−xAlx layer was constituted of a single phase Mg(Al) solid solution. The Mg(Al) grains are preferentially orientated along the c-axis and their size decreased (from 18.5 to 10.5 nm) as the Al content increased. Scanning electron microscopy and atomic force microscopy observations indicated that all the films exhibited a globular surface structure. However, the surface roughness of the films decreased as the Al concentration increased. Rutherford backscattering spectroscopy revealed that the Mg–Al layer density (porosity) was strongly dependent on the Al content. Successive hydriding charge/discharge cycles were performed on the different Pd/Mg1−xAlx/Pd films in alkaline media. The highest discharge capacity was obtained with the Pd/Mg0.79Al0.21/Pd film, namely ~85 μAh cm−2 μm−1 or 320 mAh g−1, which corresponds to a H/M atomic ratio of ~0.48 in the Mg–Al layer.


Discharge Capacity Pulse Laser Deposition Discharge Curve MgH2 Rutherford Backscattering Spectroscopy 



This work was financially supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The authors thank Dr. Martin Chicoine (University of Montreal) for the RBS analyses.


  1. 1.
    Schlapbach L, Züttel A (2001) Nature 414:353CrossRefGoogle Scholar
  2. 2.
    Wipf H (ed) (1997) Hydrogen in metals III: properties and applications, Topics in Applied Physics, vol 73. Springer-Verlag, BerlinGoogle Scholar
  3. 3.
    Oumellal Y, Rougier A, Nazri GA, Tarascon JM, Aymard L (2008) Nature Mater 7:916CrossRefGoogle Scholar
  4. 4.
    Johansosson M, Ostenfeld CW, Chorkendorff I (2006) Phys Rev B 74:193408CrossRefGoogle Scholar
  5. 5.
    Spatz P, Aebischer HA, Krozer A, Schlapbach L (1993) Z Phys Chem 181:393CrossRefGoogle Scholar
  6. 6.
    Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Inter J Hydrogen Energy 32:1121CrossRefGoogle Scholar
  7. 7.
    Huot J, Liang G, Schulz R (2001) Appl Phys A 72:187CrossRefGoogle Scholar
  8. 8.
    Fujii H, Higuchi K, Yamamoto K, Kajioka H, Orimo S, Toiyama K (2002) Mater Trans 43:2721CrossRefGoogle Scholar
  9. 9.
    Higuchi K, Kajioka H, Toiyama K, Fujii H, Orimo S, Kikuchi Y (1999) J Alloys Compd 293–295:484CrossRefGoogle Scholar
  10. 10.
    Yoshimura K, Yamada Y, Okada M (2004) Surf Sci 566–568:751CrossRefGoogle Scholar
  11. 11.
    Singh S, Eijt SWH, Zandbergen MW, Legerstee WJ, Svetchnikov VL (2007) J Alloys Compd 441:344CrossRefGoogle Scholar
  12. 12.
    Checchetto R, Brusa RS, Bazzanella N, Karwasz GP, Spagolla M, Miotello A, Mengucci A, Di Cristoforo A (2004) Thin Solid Films 469–470:350CrossRefGoogle Scholar
  13. 13.
    Bouhtiyya S, Roué L (2009) Inter J Hydrogen Energy 34:5778CrossRefGoogle Scholar
  14. 14.
    Andreasen A (2008) Inter J Hydrogen Energy 33:7489CrossRefGoogle Scholar
  15. 15.
    Domènech-Ferrer R, Sridharan MG, Garcia G, Pi F, Rodriguez-Viejo J (2007) J Power Sources 169:117CrossRefGoogle Scholar
  16. 16.
    Garcia G, Domènech-Ferrer R, Pi F, Santiso J, Rodriguez-Viejo J (2007) J Comb Chem 9:230CrossRefGoogle Scholar
  17. 17.
    Eason R (2006) Pulsed deposition of thin films: applications—led growth of functional materials. Wiley, NJCrossRefGoogle Scholar
  18. 18.
    Nayeb-Hashemi AA, Clarks JB (1988) Phase diagrams of binary magnesium alloys. ASM International, Metals Park, OHGoogle Scholar
  19. 19.
    Arnell RD, Bates RI (1992) Vacuum 43:105CrossRefGoogle Scholar
  20. 20.
    Gremaud R, Borgschulte A, Chacon C, Van Mechelen JLM, Schreuders H, Zuttel A, Hjorvarsson B, Dam B, Griessen R (2006) Appl Phys A 84:77CrossRefGoogle Scholar
  21. 21.
    Bouhtiyya S, Roué L (2008) Inter J Hydrogen Energy 33:2912CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.INRS-Énergie, Matériaux et TélécommunicationsVarennesCanada

Personalised recommendations