Journal of Materials Science

, Volume 45, Issue 4, pp 871–887 | Cite as

Volume and thermal studies for tellurite glasses

  • R. El-MallawanyEmail author
  • A. Abdel-Kader
  • M. El-Hawary
  • N. El-Khoshkhany


Binary tellurite glass systems of the forms TeO2(100 − x) − xAnOm where AnOm = La2O3 or V2O5 and x = 5, 7.5, 10, 12.5, 15, 17.5, and 20 mol% for La2O3 and 10, 20, 25, 30, 35, 40, 45, and 50 mol% for V2O5 were prepared. Density and molar volume of each glass were measured and calculated. The compressibility model has been used to find the difference volume Vd due to the exchange of one formula unit between Te and both of La and V in the binary glass system and the mean volume VA per formula unit in the present binary glass in order to check whether or not it is independent of the percentage of the modifier for a glass series and also different from series to another. Differential scanning calorimetric at different heating rates was used to gain some insight into the thermal stability and calorimetric behavior of the present binary transition metal and rare-earth tellurite glasses. The glass transformation temperature Tg and glass crystallization temperature Tc were recorded at different heating rates to calculate both of the glass transition activation and the glass crystallization activation energies by using different methods.


V2O5 La2O3 TeO2 Vanadium Oxide Tellurite Glass 


  1. 1.
    El-Mallawany R (2002) Tellurite glass handbook: physical properties and data. CRC Press, FL, USA (International Materials Institute for New Functionality in Glass (IMI-NFG), Lehigh University, USA (2005)
  2. 2.
    El-Mallawany R, Aboushely A, Rahamni A, Yousef E (1997) Phys Status Solidi A 163:377CrossRefGoogle Scholar
  3. 3.
    El-Mallawany R (1992) J Mater Res 7:224CrossRefGoogle Scholar
  4. 4.
    El-Mallawany R (1995) J Mater Sci Electron 6:1CrossRefGoogle Scholar
  5. 5.
    El-Mallawany R, Hagar I, Poulain M (2002) J Mater Sci 37:3291. doi: CrossRefGoogle Scholar
  6. 6.
    El-Mallawany R (2000) Phys Status Solidi A 177:439CrossRefGoogle Scholar
  7. 7.
    El-Mallawany R (2000) Mater Chem Phys 63:109CrossRefGoogle Scholar
  8. 8.
    El-Mallawany R (2003) J Mater Res 18(2):402CrossRefGoogle Scholar
  9. 9.
    El Mallawany R, Abbas Ahmed I (2008) J Mater Sci 43:5131. doi: CrossRefGoogle Scholar
  10. 10.
    Moawad H, Jain H, El-Mallawany R, Ramadan T, ElSherbine M (2002) J Am Ceram Soc 85:11Google Scholar
  11. 11.
    Moawad H, Jain H, El-Mallawany R (2009) J Phys Chem Solids 70:224CrossRefGoogle Scholar
  12. 12.
    Kim S, Yako T, Sakka S (1993) J Am Ceram Soc 76:2486CrossRefGoogle Scholar
  13. 13.
    Lambson EF, Saunders GA, Bridge B, El-Mallawany RA (1984) J Non-Cryst Solids 69:117CrossRefGoogle Scholar
  14. 14.
    Havinga E (1961) J Phys Chem Solids 18:253CrossRefGoogle Scholar
  15. 15.
    Mukherjee S, Ghosh U, Basu C (1992) J Mater Sci Lett 11:985CrossRefGoogle Scholar
  16. 16.
    Bridge B, Higazy AA (1986) J Phys Chem Glasses 27:1Google Scholar
  17. 17.
    Kozhukharov VS, Nikolov S, Marinov M (1979) J Mater Res Bull 14:735CrossRefGoogle Scholar
  18. 18.
    Beyer H (1967) Z Kristallogr 124:228CrossRefGoogle Scholar
  19. 19.
    Johnson PAV, Wright AC, Yarker CA, Sincair RN (1986) J Non-Cryst Solids 81:163CrossRefGoogle Scholar
  20. 20.
    Lasocka M (1979) Mater Sci Eng 23:173CrossRefGoogle Scholar
  21. 21.
    Kissinger HE (1956) J Res NBS 57:217Google Scholar
  22. 22.
    Chen H (1978) J Non-Cryst Solids 27:257CrossRefGoogle Scholar
  23. 23.
    Shelby J (1979) J Non-Cryst Solids 34:111CrossRefGoogle Scholar
  24. 24.
    Moynihan CT, Easteal AJ, Wider J, Tucker J (1974) J Phys Chem 78:2673CrossRefGoogle Scholar
  25. 25.
    Ozawa T (1965) Bull Chem Soc Jap 38:351CrossRefGoogle Scholar
  26. 26.
    Coats W, Redfern JP (1964) Nature 201:86CrossRefGoogle Scholar
  27. 27.
    Kissinger HE (1957) Anal Chem 29:1702CrossRefGoogle Scholar
  28. 28.
    Goodman CHN (1987) J Glass Technol 28:19 (1987)Google Scholar
  29. 29.
    El-Mallawany R, El-Khokany N, Afifi H (2006) Mater Chem Phys 95:321CrossRefGoogle Scholar
  30. 30.
    Sidky M, El-Mallawany R, Abousehly A, Saddeek Y (2002) Mater Chem Phys 74:222CrossRefGoogle Scholar
  31. 31.
    Sidky M, El-Mallawany R, Abousehly A, Saddeek Y (2002) Glass Sci Technol 75:87Google Scholar
  32. 32.
    Abdel Kader A, El-Mallawany R, ElKholy M (1993) J Appl Phys 73:75CrossRefGoogle Scholar
  33. 33.
    Hampton R, Hong W, Saunders G, El-Mallawany R (1987) J Non-Cryst Solids 94:307CrossRefGoogle Scholar
  34. 34.
    Hampton R, Hong W, Saunders G, El-Mallawany R (1988) Phys Chem Glasses 29:100Google Scholar
  35. 35.
    ElKholy M, El-Mallawany R (1995) Mater Chem Phys 40:163CrossRefGoogle Scholar
  36. 36.
    El-Mallawany R, El-Deen LS, Elkholy M (1996) J Mater Sci 31:6339. doi: CrossRefGoogle Scholar
  37. 37.
    El-Mallawany R, El-Said Adly, El-Gawad M (1995) Mater Chem Phys 41:87CrossRefGoogle Scholar
  38. 38.
    Abdel Kader A, El-Mallawany R, ElKholy M (1994) Mater Chem Phys 36:365CrossRefGoogle Scholar
  39. 39.
    Sooraj Hussain N, Hungerford G, El-Mallawany R, Gomes MJM, Lopes MA, Ali N, Santos JD, Buddhudu S (2008) J Nanosci Nanotechnol 8:1CrossRefGoogle Scholar
  40. 40.
    El-Mallawany R, Dirar Abdalla M, Abbas Ahmed I (2008) Mater Chem Phys 109:291CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. El-Mallawany
    • 1
    Email author
  • A. Abdel-Kader
    • 1
  • M. El-Hawary
    • 1
  • N. El-Khoshkhany
    • 1
  1. 1.Physics Department, Faculty of ScienceMenoufia UniversityShebin El-KoomEgypt

Personalised recommendations