Journal of Materials Science

, Volume 45, Issue 4, pp 865–870 | Cite as

High-temperature oxidation of MoSi2

Article

Abstract

Oxidation behavior of MoSi2 was investigated in air over the temperature range of 1400–1700 °C. Spallation of the SiO2 scale did not occur at any temperature, and Mo5Si3 formation did not happen below 1700 °C. A change in the rate-controlling mechanism was detected within the temperature range of this study. Activation energy for oxidation of MoSi2 at high temperatures was determined to be 204 kJ/mol. This value is less than the value of activation energy for oxidation of MoSi2 controlled by diffusion of O2 through amorphous SiO2 layer reported at lower temperatures. The decrease in activation energy is attributed to the increased degree of crystallization of amorphous silica to β-cristobalite at high temperatures resulting in enhanced O2 diffusion through SiO4−4 tetrahedral structure.

References

  1. 1.
    Vasudevan AK, Petrovic JJ (1992) Mater Sci Eng A 155:1CrossRefGoogle Scholar
  2. 2.
    Petrovic JJ (1997) Ceram Eng Sci Proc 18:3MathSciNetGoogle Scholar
  3. 3.
    Hebsur MG, Nathal MV (1997) Structural intermetallics. The Minerals, Metals and Materials Society, WarrendaleGoogle Scholar
  4. 4.
    Kurokawa K, Houzumi H, Saeki I, Takahashi H (1999) Mater Sci Eng A 261:292CrossRefGoogle Scholar
  5. 5.
    Sharif AA, Misra A, Mitchell TE (2005) Scripta Mater 52:399CrossRefGoogle Scholar
  6. 6.
    Inui H, Ishikawa K, Yamaguchi M (2000) Intermetallics 8:1131CrossRefGoogle Scholar
  7. 7.
    Schneibel JH, Sekhar JA (2003) Mater Sci Eng A 340:204CrossRefGoogle Scholar
  8. 8.
    Nyutu EK, Kmetz MA, Suib SL (2006) Surf Coat Technol 200:3980CrossRefGoogle Scholar
  9. 9.
    Schlichting J (1979) Mater Chem 4:93CrossRefGoogle Scholar
  10. 10.
    Grabke HJ, Meier GH (1995) Oxid Met 44:147CrossRefGoogle Scholar
  11. 11.
    Mitra R, Rao VVR, Mahajan YR (1997) Mater Sci Technol 13:415Google Scholar
  12. 12.
    Deal BE, Grove AS (1965) J Appl Phys 36:3770CrossRefADSGoogle Scholar
  13. 13.
    Berkowitz-Mattuk JB, Dils RR (1965) J Electrochem Soc 112:583CrossRefGoogle Scholar
  14. 14.
    Maruyama T, Yanagihara K, Nagata K (1993) Corros Sci 35:939CrossRefGoogle Scholar
  15. 15.
    Yanagihara K, Maruyama T, Nagata K (1993) Mater T JIM 34:1200Google Scholar
  16. 16.
    Yanagihara K, Maruyama T, Nagata K (1995) Intermetallics 3:243CrossRefGoogle Scholar
  17. 17.
    Maruyama T, Yanagihara K (1997) Mater Sci Eng A 239–240:828Google Scholar
  18. 18.
    Searcy AW (1957) J Am Ceram Soc 40:431CrossRefGoogle Scholar
  19. 19.
    Jeng YL, Lavernia EJ (1994) J Mater Sci 29:2557. doi:10.1007/BF00356804 CrossRefADSGoogle Scholar
  20. 20.
    Wirkus CD, Wilder DR (1966) J Am Ceram Soc 49:173CrossRefGoogle Scholar
  21. 21.
    Zhu YT, Stan M, Conzone SD, Butt DP (1999) J Am Ceram Soc 82:2785CrossRefGoogle Scholar
  22. 22.
    Ito K, Hayashi T, Yokobayashi M, Numakura H (2004) Intermetallics 12:407CrossRefGoogle Scholar
  23. 23.
    Natesan K, Deevi SC (2000) Intermetallics 8:1147CrossRefGoogle Scholar
  24. 24.
    Sharif AA, Misra A, Petrovic JJ, Mitchell TE (2001) Intermetallics 9:869CrossRefGoogle Scholar
  25. 25.
    Narushima T, Goto T, Hirai T (1989) J Am Ceram Soc 71:1386CrossRefGoogle Scholar
  26. 26.
    Liu YQ, Shao G, Tsakiropoulos P (2001) Intermetallics 9:125CrossRefGoogle Scholar
  27. 27.
    Shaw L, Abbaschian R (1995) J Mater Sci 30:5272. doi:10.1007/BF01178416 CrossRefADSGoogle Scholar
  28. 28.
    Gai-Boyes PL, Saltzberg MA, Vega A (1993) J Solid State Chem 106:35CrossRefADSGoogle Scholar
  29. 29.
    Glushko PI, Dorokohov VI, Ncchiporenko YP (1963) Phys Metals Metallogr 13:111Google Scholar
  30. 30.
    Sucov EW (1963) J Am Ceram Soc 46:14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCalifornia State University, Los AngelesLos AngelesUSA

Personalised recommendations