Advertisement

Journal of Materials Science

, Volume 45, Issue 3, pp 793–803 | Cite as

Properties of cellulosic fibre reinforced plaster: influence of hemp or flax fibres on the properties of set gypsum

  • Pierre DalmayEmail author
  • A. Smith
  • T. Chotard
  • P. Sahay-Turner
  • V. Gloaguen
  • P. Krausz
Article

Abstract

In the last few years, eco friendly materials have become an important part of the building materials market. Natural fibres are already used in various types of materials, like plastics, concrete and lime-based products. They demonstrate different attributes like the combination of good mechanical, thermal and acoustic properties that allow these types of materials to be used for different applications. The main drawback associated with plaster is its brittleness, especially under tensile stress. Therefore, it is interesting to investigate different methods that could potentially enhance the mechanical properties of plaster. Adding fibres to gypsum to obtain a composite material is one way to improve the behaviour of the product, especially after the failure of the matrix. The aim of this work was to the study the effects of adding natural fibres, namely hemp and flax fibres, on the setting time of plaster and the mechanical properties of the composite matrix. It was shown that hemp delayed the setting of plaster, unlike flax. The initial and final setting times almost doubled when hemp was added in a plaster matrix, whereas flax fibres did not drastically change them. Different chemical treatments of hemp were tested and the impact on the setting time was measured. The setting times of both composites made with hemp and flax were reduced once the fibres were treated (25–40% reduction), compared to the setting time of the calcium sulphate hemihydrate alone. The mechanical properties of the composite materials are also discussed. The behaviour of plaster was modified from brittle to a non-linear one when fibres were added, and even at small levels of addition, flax fibres allowed slightly higher values of flexural strength to be reached.

Keywords

Gypsum Pectin Setting Time Hemp Natural Fibre 

Notes

Acknowledgements

The authors would like to thank especially Muriel Degot of the Laboratoire de Chimie des Sustances Naturelles (LCSN), for her efficient technical help.

References

  1. 1.
    Thomas JAG (1972) Composites 3(2):62CrossRefGoogle Scholar
  2. 2.
    Sedan D (2007) Etude des interactions physico-chimiques aux interfaces fibres de chanvre/ciment. Influence sur les propriétés mécaniques du composite. Thèse de l’Université de LimogesGoogle Scholar
  3. 3.
    Eve S, Gomina M, Gmouh A, Samdi A, Moussa R, Orange G (2002) J Eur Ceram Soc 22:2269CrossRefGoogle Scholar
  4. 4.
    Ali MA, Grimer FJ (1969) J Mater Sci 4:389. doi: https://doi.org/10.1007/BF00549703 CrossRefGoogle Scholar
  5. 5.
    Coutts RSP (1990) J Mater Sci Lett 10:77CrossRefGoogle Scholar
  6. 6.
    Coutts RSP, Ward JV (1987) J Mater Sci Lett 6:562CrossRefGoogle Scholar
  7. 7.
    Khenfer MM, Morlier PP (1999) Mater Struct 32:52CrossRefGoogle Scholar
  8. 8.
    Jorlllo PA Jr, Suzuki T (1995) J Ferrocem 25(4):313Google Scholar
  9. 9.
    Hernandez-Olivares F, Oteiza I, de Villanueva L (1992) Compos Struct 22(3):123CrossRefGoogle Scholar
  10. 10.
    Keller A (2003) Compos Sci Technol 63:1307CrossRefGoogle Scholar
  11. 11.
    Deng Y, Furuno T (2002) Holzforshung 56:440CrossRefGoogle Scholar
  12. 12.
    Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Composites A 39:514CrossRefGoogle Scholar
  13. 13.
    Garcia-Jaldon C, Dupeyre D, Vignon MR (1998) Biomass Bioenerg 14:251CrossRefGoogle Scholar
  14. 14.
    Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221CrossRefGoogle Scholar
  15. 15.
    Doan T, Gao S, Mader E (2006) Compos Sci Technol 66:952CrossRefGoogle Scholar
  16. 16.
    Pinzelli R (1995) Techniques de l’ingénieur, Plastiques et Composites A3:985Google Scholar
  17. 17.
    Ganster J, Fink HP (1999) In: Brandrup J, Immergut EH, Grulke EA, Wiley EA (eds) Polymer handbook. Wiley, New York, p 135Google Scholar
  18. 18.
    Troger F, Wegener G, Seemann C (1998) Ind Crop Prod 8:113CrossRefGoogle Scholar
  19. 19.
    Batra SK (1998) In: Handbook of fibre science and technology, fibre chemistry, vol IV. Lewin and Sello, New York, p 505Google Scholar
  20. 20.
    Davies GC, Bruce DM (1998) Text Res J 68(9):623CrossRefGoogle Scholar
  21. 21.
    Saheb DN, Jog JP (1999) Adv Polym Technol 18(4):351CrossRefGoogle Scholar
  22. 22.
    Aziz SH, Ansell MP (2004) Compos Sci Technol 64:1219CrossRefGoogle Scholar
  23. 23.
    Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Composites A 38:461CrossRefGoogle Scholar
  24. 24.
    Van de Weyenberg I, Chi Truong T (2006) Composites A 37:1368CrossRefGoogle Scholar
  25. 25.
    Stuart T, Liu Q, Hughes M, McCall RD, Sharma HSS, Norton A (2006) Composites A 37(3):393CrossRefGoogle Scholar
  26. 26.
    Prisciandaro M, Lancia A, Musmarra D (2001) Ind Eng Chem Res 40:2335CrossRefGoogle Scholar
  27. 27.
    Gilsenan PM, Richardson RK, Morris ER (2003) Food hydrocoll 17:739CrossRefGoogle Scholar
  28. 28.
    Rosenbohm C, Lundt I, Christensen TMIE, Young NWG (2003) Carbohydr Res 338:637CrossRefGoogle Scholar
  29. 29.
    Braccini I, Perez S (2001) Biomacromolecules 2:1089CrossRefGoogle Scholar
  30. 30.
    Boustingorry P, Grosseau P, Guyonnet R, Guilhot B (2005) Cem Concr Res 35:2081CrossRefGoogle Scholar
  31. 31.
    Fejean J (2003) Développement et caractérisation de matériaux destinés à la protection incendie. XXIEMES Rencontres Universitaires de Génie Civil, Prix «RENE HOUPERT»Google Scholar
  32. 32.
    Lemarchand A, Ben Aim RI, Nicolis G (1989) Chem Phys Lett 162(1–2):92CrossRefGoogle Scholar
  33. 33.
    Garcia-Jaldon C (1992) Caractérisation morphologique et chimique du chanvre (Cannabis Sativa)/Prétraitement à la vapeur et valorisation. Thèse de l’Université de Grenoble IGoogle Scholar
  34. 34.
    Sun RC, Sun XF (2002) Carbohydr Polym 49:415CrossRefGoogle Scholar
  35. 35.
    Okano T, Sarko A (1984) J Appl Polym Sci 29:4175CrossRefGoogle Scholar
  36. 36.
    Mwaikambo LY, Ansell MP (2003) Compos Sci Technol 63:1297CrossRefGoogle Scholar
  37. 37.
    Baley C, Grohens Y, Levesque G, Busnel F, Pomel C, Sire O (2002) Influence des traitements chimiques sur les propriétés interfaciales et l’adhérence du système fibre de lin-résine polyester. Matériaux 1–4Google Scholar
  38. 38.
    Meille S (2001) Correlation between mechanical behavior and microstructure of set plaster. Thèse de l’INSA de Lyon, FranceGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pierre Dalmay
    • 1
    Email author
  • A. Smith
    • 1
  • T. Chotard
    • 1
    • 2
  • P. Sahay-Turner
    • 1
  • V. Gloaguen
    • 3
  • P. Krausz
    • 3
  1. 1.Ecole Nationale Supérieure de Céramique IndustrielleGroupe d’Etude des Matériaux Hétérogènes (GEMH, EA 3178)Limoges CedexFrance
  2. 2.Département Génie Mécanique et ProductiqueInstitut Universitaire de TechnologieLimoges CedexFrance
  3. 3.Faculté des Sciences de LimogesLaboratoire de Chimie des Substances Naturelles, (LCSN, EA 1069)Limoges CedexFrance

Personalised recommendations