Advertisement

Journal of Materials Science

, Volume 45, Issue 3, pp 759–764 | Cite as

Strain localization of fully dense nanocrystalline Ni sheet

  • Rongtao Zhu
  • Jianqiu ZhouEmail author
  • Hua Jiang
  • Dongsheng Zhang
Article

Abstract

The fully dense electrodeposited nanocrystalline Ni sample with dimensions at tens of millimeters was characterized under quasi-static uniaxial tensile load. During testing, the sample exhibited high strength simultaneously with a decrease in tensile strain. To inspect this early failure of the nanocrystalline Ni sample in this article, the strain fields of the sample were quantified with digital image correlation algorithm, and strain localization phenomenon in the form of shear band was captured successfully. Meanwhile, the failure mode and fracture surface of the Ni sample were examined in detail. The results suggest that the shear banding is a main deformation mode in nanocrystalline Ni sample, and it is an important factor to induce the early failure of the sample during plastic deformation.

Keywords

Shear Band Field Emission Scanning Electron Microscope Strain Localization Digital Image Correlation Shear Localization 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (10502025, 10872087), Natural Science Foundation of Jiangsu Province (BK2007528), University Graduate Innovation Plan of Jiangsu Province (CX09B_129Z), and Doctors’ Innovation Foundation of NJUT (BSCX200814).

References

  1. 1.
    Suryanarayana C (1995) Int Mater Rev 40:41CrossRefGoogle Scholar
  2. 2.
    Masumura RA, Hazzledine PM, Pande CS (1998) Acta Mater 46:4527CrossRefGoogle Scholar
  3. 3.
    Wang YM, Huang JY, Jiao T, Zhu YT, Hamza AV (2007) J Mater Sci 42:1751. doi: https://doi.org/10.1007/s10853-006-0822-0 CrossRefGoogle Scholar
  4. 4.
    Farhat ZN, Ding Y, Northwood DO, Alpas AT (1996) Mater Sci Eng A 206:302CrossRefGoogle Scholar
  5. 5.
    Jeong DH, Gonzalez F, Palumbo G, Aust KT, Erb U (2001) Scripta Mater 44:493CrossRefGoogle Scholar
  6. 6.
    Vajpai S, Dube R (2009) J Mater Sci 44:129. doi: https://doi.org/10.1007/s10853-008-3111-2 CrossRefGoogle Scholar
  7. 7.
    McFadden SX, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee AK (1999) Nature 398:684CrossRefGoogle Scholar
  8. 8.
    Lu L, Sui ML, Lu K (2000) Science 287:1463CrossRefGoogle Scholar
  9. 9.
    Wang YM, Wang K, Pan D, Lu K, Hemker KJ, Ma E (2003) Scripta Mater 48:1581CrossRefGoogle Scholar
  10. 10.
    Weertman JR, Farkas D, Hemker K, Kung H, Mayo M, Van Swygenhoven H (1999) MRS Bull 24:44CrossRefGoogle Scholar
  11. 11.
    Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Acta Mater 51:5159CrossRefGoogle Scholar
  12. 12.
    Dalla Torre F, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957CrossRefGoogle Scholar
  13. 13.
    Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521CrossRefGoogle Scholar
  14. 14.
    Jia D, Ramesh KT, Ma E (2003) Acta Mater 51:3495CrossRefGoogle Scholar
  15. 15.
    Wei Q, Jia D, Ramesh KT (2002) Appl Phys Lett 81:1240CrossRefGoogle Scholar
  16. 16.
    Wei Q, Kecskes LJ, Jiao T, Hartwig KT, Ramesh KT, Ma E (2004) Acta Mater 52:1859CrossRefGoogle Scholar
  17. 17.
    Carsley JE, Fisher A, Milligan WW, Aifantis EC (1998) Metall Mater Trans A 29:2261CrossRefGoogle Scholar
  18. 18.
    Hung PC, Sun PL, Yu CY, Kao PW, Chang CP (2005) Scripta Mater 53:647CrossRefGoogle Scholar
  19. 19.
    Sansoz F, Dupont V (2007) Mater Sci Eng C 5–8:1509CrossRefGoogle Scholar
  20. 20.
    Fu H, Benson DJ, Meyers MA (2004) Acta Mater 52:4413CrossRefGoogle Scholar
  21. 21.
    Wei YJ, Anand L (2004) J Mech Phys Solids 52:2587CrossRefGoogle Scholar
  22. 22.
    Warner DH, Sansoz F, Molinari JF (2006) Int J Plast 22:754CrossRefGoogle Scholar
  23. 23.
    Mishra AC, Thakur AK, Srinivas V (2009) J Mater Sci 44:3520. doi: https://doi.org/10.1007/s10853-009-3475-y CrossRefGoogle Scholar
  24. 24.
    Jung A, Natter H, Hempelmann R, Lach E (2009) J Mater Sci 44:2725. doi: https://doi.org/10.1007/s10853-009-3330-1 CrossRefGoogle Scholar
  25. 25.
    Barthelat F, Wu Z, Prorok BC, Espinosa HD (2003) Exp Mech 43:331CrossRefGoogle Scholar
  26. 26.
    Florando JN, LeBlanc MM, Lassila DH (2007) Scripta Mater 57:537CrossRefGoogle Scholar
  27. 27.
    Canadinc D, Efstathiou C, Sehitoglu H (2008) Scripta Mater 59:1103CrossRefGoogle Scholar
  28. 28.
    Koch CC (2003) Nanocryst Mater 18:9Google Scholar
  29. 29.
    Swygenhoven HV, Caro A (1997) Nanostruct Mater 9:669CrossRefGoogle Scholar
  30. 30.
    Jia D, Wang YM, Ramesh KT, Ma E, Zhu YT, Valiev RZ (2001) Appl Phys Lett 79:611CrossRefGoogle Scholar
  31. 31.
    Li W, Liu P, Ma FC, Rong YH (2009) J Mater Sci 44:2925. doi: https://doi.org/10.1007/s10853-009-3386-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rongtao Zhu
    • 1
  • Jianqiu Zhou
    • 1
    Email author
  • Hua Jiang
    • 1
  • Dongsheng Zhang
    • 2
    • 3
  1. 1.School of Mechanical and Power EngineeringNanjing University of TechnologyNanjingChina
  2. 2.Department of MechanicsShanghai UniversityShanghaiChina
  3. 3.Shanghai Institute of Applied Mathematics and MechanicsShanghaiChina

Personalised recommendations