Journal of Materials Science

, Volume 45, Issue 1, pp 282–285 | Cite as

Low temperature processing of highly porous silicon carbide ceramics with improved flexural strength

  • Yong-Jae Jin
  • Young-Wook KimEmail author

Porous silicon carbide ceramics have many industrial applications, such as hot gas particulate filters, molten metal filters, preforms for a metal–matrix and polymer–matrix composites, gas burner media, and light weight structural parts on account of their low density, thermal stability, chemical stability, high specific strength, and high thermal shock resistance [1, 2, 3, 4, 5, 6]. Different processing routes for highly porous SiC ceramics have been developed for specific applications to satisfy the associated requirements of porosity, pore size, and degree of interconnectivity. These manufacturing techniques are typically divided into three categories: replica techniques [4, 7], reaction techniques [8, 9, 10], and gel casting techniques [11]. Recently, the production of porous ceramics from preceramic polymers has attracted considerable attention due to the expected improvement in the properties of porous ceramics and the potential cost-effective polymer processing [12, 13, 14, 15]....


Flexural Strength Pyrolysis Temperature Glycol Dimethacrylate Porous Ceramic Replica Technique 



One of the authors (Y.-W. Kim) gratefully acknowledges the helpful discussions with Professor M. Narisawa at the Osaka Prefecture University in Japan. This study was supported by the Korea Science and Engineering Foundation (KOSEF) Grant (R01-2008-000-20057-0) funded by the Korea government (MEST).


  1. 1.
    Bao X, Nangrejo MR, Edirisinghe MJ (1999) J Mater Sci 34:2495. doi: CrossRefGoogle Scholar
  2. 2.
    Wilkes TE, Young ML, Sepulveda RE, Dunand DC, Faber KT (2006) Scripta Mater 55:1083CrossRefGoogle Scholar
  3. 3.
    Fukushima M, Zhou Y, Miyazaki H, Yoshizawa Y, Hirao K, Iwamoto Y, Yamazaki S, Nagano T (2006) J Am Ceram Soc 89(5):1523CrossRefGoogle Scholar
  4. 4.
    Yao X, Tan S, Zhang X, Huang Z, Jiang D (2007) J Mater Sci 42:4960. doi: CrossRefGoogle Scholar
  5. 5.
    Zheng Y, Zheng Y, Wang R, Wei K (2008) J Mater Sci 43:5331. doi: CrossRefGoogle Scholar
  6. 6.
    Kim YW, Chun YS, Nishimura T, Mitomo M, Lee YH (2007) Acta Mater 55:727CrossRefGoogle Scholar
  7. 7.
    Mouazer R, Mullens S, Thijs I, Luyten J, Buekenhoudt A (2005) Adv Eng Mater 7:1124CrossRefGoogle Scholar
  8. 8.
    Esposito L, Sciti D, Piancastelli A, Bellosi A (2004) J Eur Ceram Soc 24:533CrossRefGoogle Scholar
  9. 9.
    Bhattacharya AK, Heinrich JG (2006) J Mater Sci 41:2443. doi: CrossRefGoogle Scholar
  10. 10.
    Herzog A, Vogt U, Kaczmarek O, Klingner R, Richter K, Thoemen H (2006) J Am Ceram Soc 89:1499CrossRefGoogle Scholar
  11. 11.
    Mouazer R, Thijs I, Mullens S, Luyten J (2004) Adv Eng Mater 6:340CrossRefGoogle Scholar
  12. 12.
    Colombo P, Bernardo E, Biasetto L (2004) J Am Ceram Soc 87:152CrossRefGoogle Scholar
  13. 13.
    Chae SH, Kim YW (2009) J Mater Sci 44:1404. doi: CrossRefGoogle Scholar
  14. 14.
    Colombo P (2006) Phil Trans R Soc A 364:109CrossRefGoogle Scholar
  15. 15.
    Colombo P (2008) J Eur Ceram Soc 28:1389CrossRefGoogle Scholar
  16. 16.
    Colombo P, Paulson TE, Pantano CG (1997) J Am Ceram Soc 80:2333CrossRefGoogle Scholar
  17. 17.
    Kim YW, Eom JH, Wang C, Park CB (2008) J Am Ceram Soc 91:1361CrossRefGoogle Scholar
  18. 18.
    Kim YW, Park CB (2003) Compos Sci Technol 63:2371CrossRefGoogle Scholar
  19. 19.
    Zhu X, Jiang D, Tan S (2002) Mater Sci Eng A323:232CrossRefGoogle Scholar
  20. 20.
    Zhang Z, Wang F, Yu X, Wang Y, Yan Y, Li K, Luan Z (2009) J Am Ceram Soc 92:260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringThe University of SeoulSeoulRepublic of Korea

Personalised recommendations