Advertisement

Journal of Materials Science

, Volume 45, Issue 3, pp 725–732 | Cite as

A comparative study of different solvothermal methods for the synthesis of Sn2+-doped BaTiO3 powders and their dielectric properties

  • Yahong XieEmail author
  • Shu Yin
  • Takatoshi Hashimoto
  • Yuichi Tokano
  • Atsushi Sasaki
  • Tsugio Sato
Article

Abstract

Ternary oxides containing Sn2+ are rare and difficult to prepare by the conventional solid state reactions due to the disproportionation of Sn2+ to Sn4+ and Sn at high temperatures. In this article, Sn2+-doped barium titanate, Ba1−xSnxTiO3 (x = 0.00, 0.02, 0.05, and 0.10) nanopowders were successfully synthesized at a moderate temperature by a microwave-assisted solvothermal reaction (MSR) and a solvothermal reaction with rolling (SRR). The powders obtained using the MSR and SRR consisted of nanoparticles of 20–50 nm and 100–120 nm in diameter, respectively. The dielectric constant of the sample increased by doping with a small amount of Sn2+ (x ≤ 0.05), but decreased by doping in excess amounts of it.

Keywords

BaTiO3 Curie Temperature Barium Titanate Conventional Solid State Reaction Ceramic Body 

Notes

Acknowledgements

This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology, “Special Education and Research Expenses, Post-Silicon Materials and Devices Research Alliance”.

References

  1. 1.
    Hosogi Y, Shimodaira Y, Kato H, Kobayashi H, Kudo A (2008) Chem Mater 20:1299. doi: https://doi.org/10.1021/cm071588c CrossRefGoogle Scholar
  2. 2.
    Mizoguchi H, Wattiaux A, Kykyneshi R, Tate J, Sleight AW, Subramanian MA (2008) Mater Res Bull 43:1943. doi: https://doi.org/10.1016/j.materresbull.2008.03.011 CrossRefGoogle Scholar
  3. 3.
    Konishi Y, Ohsawa M, Yonezawa Y, Tanimura Y, Chikyow T, Wakisaka T, Koinuma H, Miyamoto A, Kubo M, Sasata K (2003) Mater Res Soc Symp Proc 748:U3.13.1Google Scholar
  4. 4.
    Hosogi Y, Tanabe K, Kato H, Kobayashi H, Kudo A (2004) Chem Lett 33:28. doi: https://doi.org/10.1246/cl.2004.28 CrossRefGoogle Scholar
  5. 5.
    Konisi Y, Osawa M, Yonezawa Y (2003) Fuji Jiho 76(4):241 in JapaneseGoogle Scholar
  6. 6.
    Jeitschko W, Sleight AW (1974) Acta Crystallogr Cryst Chem B30:2088. doi: https://doi.org/10.1107/S0567740874006534 CrossRefGoogle Scholar
  7. 7.
    Ercit TS, Cerny P (1988) Can Mineral 26:899Google Scholar
  8. 8.
    Kumada N, Yonesaki Y, Takei T, Kinomura N, Wada S (2009) Mater Res Bull 44:1298. doi: https://doi.org/10.1016/j.materresbull.2008.12.017 CrossRefGoogle Scholar
  9. 9.
    Xie YH, Yin S, Yamane H, Hashimoto T, Machida H, Sato T (2008) Chem Mater 20:4931. doi: https://doi.org/10.1021/cm800277b CrossRefGoogle Scholar
  10. 10.
    Xie YH, Yin S, Hashimoto T, Kimura H, Sato T (2009) J Mater Sci 44:4834. doi: https://doi.org/10.1007/s10853-009-3737-8 CrossRefGoogle Scholar
  11. 11.
    Polla DL, Lorraine FF (1998) Ann Rev Mater Sci 28:563. doi: https://doi.org/10.1146/annurev.matsci.28.1.563 CrossRefGoogle Scholar
  12. 12.
    Takenaka T, Nagata H (2005) J Eur Ceram Soc 25:2693. doi: https://doi.org/10.1016/j.jeurceramsoc.2005.03.125 CrossRefGoogle Scholar
  13. 13.
    Mark AM, Elliott BS (2003) J Eur Ceram Soc 23:2143. doi: https://doi.org/10.1016/S0955-2219(03)00022-0 CrossRefGoogle Scholar
  14. 14.
    Xinhua Z, Jianmin Z, Shunhua Z, Zhiguo L, Naiben M, Dietrich H (2005) J Cryst Growth 283:553. doi: https://doi.org/10.1016/j.jcrysgro.2005.05.080 CrossRefGoogle Scholar
  15. 15.
    Zhonghua Y, Hanxing L, Yan L, Zhaohui W, Zongyang S, Yang L, Minghe C (2008) Mater Chem Phys 109:475. doi: https://doi.org/10.1016/j.matchemphys2007.12.019 CrossRefGoogle Scholar
  16. 16.
    Rath MK, Pradhan GK, Pandey B, Verma HC, Roul BK, Anand S (2008) Mater Lett 62:2136. doi: https://doi.org/10.1016/j.matlet.2007.11.033 CrossRefGoogle Scholar
  17. 17.
    Yong-Il K, Kwon-Sang R, Seung-Hoon N, Jong-Seo P (2006) Curr Appl Phys 6S1:e266. doi: https://doi.org/10.1016/j.cap.2006.01.053 Google Scholar
  18. 18.
    Yuji H, Kiyoka T, Cihangir D, Kimiysu S, Takaaki N, Koji W (2008) Mater Sci Eng A 475:57. doi: https://doi.org/10.1016/j.msea.2006.12.138 CrossRefGoogle Scholar
  19. 19.
    Srimala S, Ahmad FMN, Zainal AA, Radzali O, Anthony W (2008) J Mater Process Technol 195:171. doi: https://doi.org/10.1016/j.jmatprotec.2007.04.120 CrossRefGoogle Scholar
  20. 20.
    Hosseini M, Moosavi SJ (2000) Ceram Int 26:541. doi: https://doi.org/10.1016/S0272-8842(99)00092-9 CrossRefGoogle Scholar
  21. 21.
    Wang YG, Zhong WL, Zhang PL (1994) Solid State Commun 92(6):519. doi: 0038-1098(94)00498-6CrossRefGoogle Scholar
  22. 22.
    Arlt G, Hennings D, de With G (1985) J Appl Phys 58(4):1619CrossRefGoogle Scholar
  23. 23.
    Lin S, Lü T, Jin C, Wang X (2006) Phys Rev B 74:134115CrossRefGoogle Scholar
  24. 24.
    Zhao Z, Buscaglia V, Viviani M, Buscaglia MT, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P (2004) Phys Rev B 70:024107. doi: https://doi.org/10.1103/PhysRevB.70.024107 CrossRefGoogle Scholar
  25. 25.
    Subbarao EC (1998) Colloids Surf A 133:3. doi: https://doi.org/10.1016/S0927-7757(97)00104-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yahong Xie
    • 1
    Email author
  • Shu Yin
    • 1
  • Takatoshi Hashimoto
    • 2
  • Yuichi Tokano
    • 2
  • Atsushi Sasaki
    • 2
  • Tsugio Sato
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversitySendaiJapan
  2. 2.NEC Tokin CorporationSendaiJapan

Personalised recommendations