Advertisement

Journal of Materials Science

, Volume 45, Issue 3, pp 681–687 | Cite as

Effect of heat treatment on the mechanical properties of North American jack pine: thermogravimetric study

  • Duygu KocaefeEmail author
  • Sandor Poncsak
  • Junjun Tang
  • Mohamed Bouazara
Article

Abstract

Heat treatment improves dimensional stability of wood, reduces its decay, and darkens its color. However, mechanical properties of wood can deteriorate during the heat treatment. The effect of heat-treatment conditions (maximum treatment temperature, heating rate, exposure time at the maximum heat-treatment temperature, and the gas humidity) on the mechanical properties of North American jack pine (Pinus banksiana) was studied using thermogravimetric analyzer. This type of study permits the identification of the best treatment conditions which will minimize reduction of mechanical properties of jack pine. The results showed that the degree of change in bending strength, hardness, screw withdrawal strength, and dimensional stability of jack pine during heat treatment depends strongly on the treatment conditions used. Therefore, great care should be taken to select the treatment conditions. Thermogravimetric analysis can be used as a first step for selection.

Keywords

Lignin Hemicellulose Dimensional Stability Untreated Wood Treatment Recipe 

Notes

Acknowledgments

The authors would like to thank the University of Quebec at Chicoutimi (UQAC) and the Foundation of the UQAC (FUQAC) for the financial support.

References

  1. 1.
    Fengel D, Wegener G (1984) Wood chemistry, ultrastructure reactions. DeGruyter, BerlinGoogle Scholar
  2. 2.
    Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Holzforschung 56:648CrossRefGoogle Scholar
  3. 3.
    Hakkou M, Pétrissens M, Zoulalian A, Gérardin P (2005) Polym Degrad Stab 89:1CrossRefGoogle Scholar
  4. 4.
    Kamdem DP, Pizzi A, Jermammaud A (2002) Holz als Roh- und Werkstoff 60:1CrossRefGoogle Scholar
  5. 5.
    Kosikova B, Hricovini M, Cosentino C (1999) Wood Sci Technol 33:373CrossRefGoogle Scholar
  6. 6.
    Tjeerdsma BF, Boonstra M, Pizzi A, Tekely H, Millitz H (1998) Holz als Roh- und Werkstoff 56:149CrossRefGoogle Scholar
  7. 7.
    Homan W, Tjeerdsma B, Beckers E, Joressen A (2000) Structural and other properties of modified wood. Congress WCTE, Whistler, Canada, pp 3.5.1-1–3.5.1.-8Google Scholar
  8. 8.
    Tjeerdsma B, Militz H (2005) Holz als Roh- und Werkstoff 63:102CrossRefGoogle Scholar
  9. 9.
    Avat F (1993) Contribution à l’ètude des traitements thermiques du bois jusqu’à 300°C: transformations chimiques et caractérisations physico-chimiques, PhD Thesis, École des Mines de Saint-Etienne, FranceGoogle Scholar
  10. 10.
    Stamm AJ, Burr HK, Kline AA (1946) Ind Eng Chem 38:630CrossRefGoogle Scholar
  11. 11.
    Stamm AJ (1956) Ind Eng Chem 48:413CrossRefGoogle Scholar
  12. 12.
    Dirol D, Guyonnet R (1993) The improvement of wood durability by retification process. Document no IRG/WP 98–40015. International Research Group on Wood Protection, Stockholm, SwedenGoogle Scholar
  13. 13.
    Pavlo B, Niemz P (2003) Holzforschung 57:539Google Scholar
  14. 14.
    Kocaefe D, Shi JL, Yang DQ, Bouazara M (2008) For Prod J 59:88Google Scholar
  15. 15.
    Sanderman W, Augustin H (1963) Holz als Roh- und Werkstoff 21:256CrossRefGoogle Scholar
  16. 16.
    Fengel D (1966) Holz als Roh- und Werkstoff 24:9CrossRefGoogle Scholar
  17. 17.
    Viitaniemi P (1997) Thermowood—modified wood for improved performance. Wood: the ecological material In: 4th Eurowood symposium, Stockholm, Sweeden, September 22–23, Tratek. Swedish institute for wood technology research, pp 67–70Google Scholar
  18. 18.
    Santos JA (2000) Wood Sci Technol 34:39CrossRefGoogle Scholar
  19. 19.
    Chanrion P, Schreiber J (2002) Les différents procédés, Bois traité par haute température, Edition CTBA, ParisGoogle Scholar
  20. 20.
    Yildiz S, Çolakoglu G, Yildiz ÜC, Gezer ED, Temiz A (2002) Effects of heat treatment on modulus of elasticity of beech wood, document no. IRG/WP 02–40222. International Research Group on Wood Protection, Stockholm, SwedenGoogle Scholar
  21. 21.
    Poncsak S, Kocaefe D, Bouazara M, Pichette A (2006) Wood Sci Technol 40:647CrossRefGoogle Scholar
  22. 22.
    Kocaefe D, Chaudry B, Poncsak S, Bouazara M, Pichette A (2007) J Mater Sci 42:854. doi: https://doi.org/10.1007/s10853-006-0054-3 CrossRefGoogle Scholar
  23. 23.
    Vernois M (2001) Heat treatment of wood in France—state of art. In: Rapp AO (ed) Proceedings of special seminar review on heat treatment of wood, Antibes, France February 9. BFH the federal research centre for forestry and forest products, Hamburg, pp 39–46Google Scholar
  24. 24.
    Syrjanen T, Kestopuu O, Jamsa S, Viitaniemi P (2001) Heat treatment of wood in Finland—state of the art. In: Rapp AO (ed) Proceedings of special seminar on heat treatment of wood, antibes, France. BFH the Federal Research Centre for Forestry and Forest Products, Hamburg, pp 11–19Google Scholar
  25. 25.
    ASTM International (2004) Annual book of ASTM standards. Section 4 (construction), 4.10 (wood). ASTM International, PAGoogle Scholar
  26. 26.
    Spiegelberg HL (1966) The effect of hemicelluloses on the mechanical properties of individual pulp fibers. Thesis, The Institute for Paper Chemistry, Lawrence University, Appleton, WisconsinGoogle Scholar
  27. 27.
    Sørensen JS (1997) Comparison of wet oxidation and enzyme treatment. Bachelor project, Plant Fibre Laboratory, Department of Agricultural Sciences, The Royal Veterinary and Agricultural University, CopenhagenGoogle Scholar
  28. 28.
    Kocaefe D, Poncsak S, Boluk Y (2008) BioResources 3:517Google Scholar
  29. 29.
    Borrega M, Kärenlampi PP (2008) J Wood Sci 54:323CrossRefGoogle Scholar
  30. 30.
    Ross J (2004) Étude des composés chimiques extraits des lixiviats issus de la thermotransformation du pin gris (Pinus banksiana Lamb). Master Thesis, University of Quebec at Chicoutimi, Chicoutimi, Québec, CanadaGoogle Scholar
  31. 31.
    Kubojima Y, Wada M, Suzuki Y, Tonosaki M (2001) Wood Sci Technol 35:503CrossRefGoogle Scholar
  32. 32.
    Gosselink RJA, Krosse AMA, Van der Putten JC (2004) Ind Crops Prod 19:3–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Duygu Kocaefe
    • 1
    Email author
  • Sandor Poncsak
    • 1
  • Junjun Tang
    • 1
  • Mohamed Bouazara
    • 1
  1. 1.Department of Applied SciencesUniversity of Quebec at ChicoutimiQuébecCanada

Personalised recommendations