Microstructure and property characterisation of 3-3 Al(Mg)/Al2O3 interpenetrating composites produced by a pressureless infiltration technique
- 257 Downloads
- 18 Citations
Abstract
3-3 Interpenetrating composites, consisting of 3-dimensionally interpenetrating matrices of two different phases, are interesting materials with potentially superior properties when compared with traditional metal matrix composites. In the present research, gel-cast Al2O3 foams with open porosity in the form of spherical cells connected by circular windows were pressurelessly infiltrated using an Al-8 wt% Mg alloy. Electron backscatter diffraction (EBSD) analysis revealed that the alloy had a large grain size with single grains generally inhabiting multiple cells. The flexural strength of the composites, tested using 3-point bending, was ~350 MPa, rather high when compared to other Al-alloy-based Al2O3 composites. The strength increased with both decreasing foam density and cell size. The reasons for the high strength are good metal–ceramic interfacial bonding, crack bridging by plastic deformation of the metal phase and crack deflection.
Keywords
Foam Flexural Strength Crack Deflection Ceramic Phase Ceramic FoamNotes
Acknowledgements
The authors gratefully acknowledge funding from the EPSRC, UK and Dyson Thermal Technologies, Sheffield, UK, for supplying the alumina foams.
References
- 1.Bannister M, Shercliff H, Bao G, Zok F, Ashby MF (1992) Acta Metall Mater 40:1531CrossRefGoogle Scholar
- 2.Farber KT, Evans AG (1983) Acta Metall 31:577CrossRefGoogle Scholar
- 3.Evans AG, Cannon RM (1986) Acta Metall 34:761CrossRefGoogle Scholar
- 4.Sigl LS, Mataga PA, Dalgleish BJ, McMeeking RM, Evans AG (1988) Acta Metall 36:945CrossRefGoogle Scholar
- 5.Rödel J (1992) J Eur Ceram Soc 10:143CrossRefGoogle Scholar
- 6.Tuan WH, Pai YP (1999) J Am Ceram Soc 82:1624CrossRefGoogle Scholar
- 7.Lü P, Yue XY, Yu L, Ru HQ (2009) J Mater Sci 44:3483. doi: https://doi.org/10.1007/s10853-009-3466-z CrossRefGoogle Scholar
- 8.Luan WZ, Jiang CH, Ji V, Wang HW (2009) J Mater Sci 44:2454. doi: https://doi.org/10.1007/s10853-009-3310-5 CrossRefGoogle Scholar
- 9.Sadeghian Z, Enayati MH, Beiss P (2009) J Mater Sci 44:2566. doi: https://doi.org/10.1007/s10853-009-3335-9 CrossRefGoogle Scholar
- 10.Srivastava VC, Rudrakshi GB, Uhlenwinkel V, Ojha SN (2009) J Mater Sci 44:2288. doi: https://doi.org/10.1007/s10853-008-2924-3 CrossRefGoogle Scholar
- 11.Wang X, Chen GQ, Li B, Wu GH, Jiang DM (2009) J Mater Sci 44:4303. doi: https://doi.org/10.1007/s10853-009-3639-9 CrossRefGoogle Scholar
- 12.Cheng SL, Yang GC, Wang JC, Yang CL, Zhu M, Zhou YH (2009) J Mater Sci 44:3420. doi: https://doi.org/10.1007/s10853-009-3454-3 CrossRefGoogle Scholar
- 13.Prielipp H, Knechtel M, Claussen N, Streiffer SK, Müllejans H, Rühle M, Rödel J (1995) Mater Sci Eng A 197:19CrossRefGoogle Scholar
- 14.Skirl S, Krause R, Wiederhorn SM, Rödel J (2001) J Am Ceram Soc 84:2034CrossRefGoogle Scholar
- 15.Klassen T, Günther R, Dickau B, Gärtner F, Bartels A, Bormann R, Mecking H (1998) J Am Ceram Soc 81:2504CrossRefGoogle Scholar
- 16.Clarke DR (1992) J Am Ceram Soc 75:739CrossRefGoogle Scholar
- 17.Binner JGP, Chang H, Higginson RL (2009) J Eur Ceram Soc 29:837CrossRefGoogle Scholar
- 18.Chang H, Binner JGP, Higginson RL (2009) J Microsc 233:132CrossRefGoogle Scholar
- 19.Chang H, Binner JGP, Higginson RL, Sambrook R (2006) Processing of Al-Mg/Al2O3 interpenetrating composites by pressureless infiltration. In: Proceedings of the 67th world foundry congress, UK [CD ROM]Google Scholar
- 20.Zhao LZ, Cao XM, Tian C, Hu WP, Xing HW, Zhang JS (2006) Chin Shu Hsueh Pao 42:325Google Scholar
- 21.Wang SR, Geng HR, Wang YZ, Zhang JC (2006) Theor Appl Fract Mech 46:57CrossRefGoogle Scholar
- 22.Travitzky NA, Shlayen A (1998) Mater Sci Eng A 244:154CrossRefGoogle Scholar
- 23.Zimmermann A, Hoffman M, Emmel T, Gross D, Rödel J (2001) Acta Mater 49:3177CrossRefGoogle Scholar