Advertisement

Journal of Materials Science

, Volume 45, Issue 1, pp 279–281 | Cite as

Electrical properties of flash-evaporated carbon nanolayers on PTFE

  • T. Hubáček
  • O. Lyutakov
  • V. Rybka
  • V. ŠvorčíkEmail author
Letter

Potential application of flash-deposited carbon layers depends crucially on their mechanical properties [1, 2]. For applications in electron microscopy the layer thickness, homogeneity and electrical conductivity are of utmost importance [3]. Interaction with living cells was recently found to depend on chemical composition, polarity and electrical conductance of carbon layer [4, 5].

In our previous work [1] it was shown that the thickness of the flash-evaporated carbon layer decreases monotonously with increasing distance between the carbon filament and the substrate. The carbon layers, prepared by the flash deposition, were shown to contain significant fractions of oxygen, hydrogen and amorphous carbon (a-C:H). The carbon deposition results in dramatic decrease of the sheet resistance of the carbon–polymer composite.

The present work is a continuation of our previous study of the properties of the flash-evaporated carbon layers. The temperature dependence of the sheet resistance (Rs)...

Keywords

Charge Transport Sheet Resistance Carbon Layer Carbon Filament Flash Evaporation 

Notes

Acknowledgements

This work was supported by GA CR under the project 106/09/0125, Ministry of Education of the CR under Research programs 6046137302 and LC06041 and GAAS CR under the projects KAN400480701 and KAN 200100801.

References

  1. 1.
    Švorčík V, Hubáček T, Slepička P, Siegel J, Kolská Z, Bláhová O, Macková A, Hnatowicz V (2009) Carbon 47:1770CrossRefGoogle Scholar
  2. 2.
    Schelz S, Richmond T, Kania P, Oelhafen P, Güntherodt HJ (1996) Surf Sci 359:227CrossRefGoogle Scholar
  3. 3.
    Chester DW, Klemic JF, Stern E, Sigwortha FJ, Klemic KG (2007) Ultramicroscopy 107:685CrossRefGoogle Scholar
  4. 4.
    Kubová O, Švorčík V, Heitz J, Moritz S, Romanin C, Matějka P, Macková A (2007) Thin Solid Films 515:6765CrossRefGoogle Scholar
  5. 5.
    Yang P, Kwok SCH, Fu RKY, Leng YX, Wang J, Wan GJ, Huang N, Leng Y, Chu PK (2004) Surf Coat Technol 177–178:747CrossRefGoogle Scholar
  6. 6.
    Švorčík V, Lyutakov O, Huttel I (2008) J Mater Sci Mater Electron 19:363CrossRefGoogle Scholar
  7. 7.
    Tauc J (1974) Amorphous and liquid semiconductors. Springer, HeidelbergCrossRefGoogle Scholar
  8. 8.
    Pradhan D, Sharon M (2007) Appl Surf Sci 253:7004CrossRefGoogle Scholar
  9. 9.
    Švorčík V, Endrst R, Arenholtz E, Hnatowicz V (1995) Eur Polym J 31:189CrossRefGoogle Scholar
  10. 10.
    Mott N (1990) Metal insulator transitions. Taylor & Francis, LondonCrossRefGoogle Scholar
  11. 11.
    Lonfat M, Marsen B, Sattler K (1999) Chem Phys Lett 313:539CrossRefGoogle Scholar
  12. 12.
    Singh J (1993) Physics of semiconductors and their heterostructures. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • T. Hubáček
    • 1
  • O. Lyutakov
    • 1
  • V. Rybka
    • 1
  • V. Švorčík
    • 1
    Email author
  1. 1.Department of Solid State EngineeringInstitute of Chemical TechnologyPragueCzech Republic

Personalised recommendations