Advertisement

Journal of Materials Science

, Volume 45, Issue 3, pp 652–661 | Cite as

Mechanical behavior of A265 single fibers

  • Jaeyoung Lim
  • James Q. Zheng
  • Karl Masters
  • Weinong W. ChenEmail author
Article

Abstract

The mechanical behavior of A265 high-performance fibers was experimentally investigated at both low and high strain rates. Axial, transverse, and torsional experiments were performed to measure the five material constants on a single fiber assumed as a linear, transversely isotropic material. In order to determine the tensile response of the fiber at high rates, a modified Kolsky tensile bar, also known as a split Hopkinson tension bar (SHTB) for single-fiber tests, was used. The diameter of each fiber was measured individually using a high-resolution scanning electron microscope for accurate stress calculation. A pulse shaper technique was adopted to generate a smooth and constant-amplitude incident pulse to produce deformation in the fiber specimen at a nearly constant strain rate. The tensile strength of the fiber exhibits both rate and gage-length effects.

Keywords

High Strain Rate Single Fiber Fiber Specimen A265 Fiber Semiconductor Strain Gage 

References

  1. 1.
    Yang HH (1992) Kevlar aramid fiber. John Wiley & Sons, New York, NYGoogle Scholar
  2. 2.
    Morton WE, Hearle JWS (1993) Physical properties of textile fibres. The Textile Institute, UKGoogle Scholar
  3. 3.
    Wang Y, Xia Y (1998) Compos Part A Appl Sci 29A:1411CrossRefGoogle Scholar
  4. 4.
    Shim VPW, Lim CT, Foo KJ (2001) Int J Impact Eng 25:1CrossRefGoogle Scholar
  5. 5.
    Creasy TS (2002) J Compos Mater 36:183CrossRefGoogle Scholar
  6. 6.
    Languerand DL, Zhang H, Murthy NS, Ramesh KT, Sanoz F (2009) Mater Sci Eng A 500:216CrossRefGoogle Scholar
  7. 7.
    Cheng M, Chen W (2005) J Eng Mater-T ASME 127:197CrossRefGoogle Scholar
  8. 8.
    Kawabata S (1990) J Text Inst 81:432CrossRefGoogle Scholar
  9. 9.
    Singletary J, Davis H, Ramasubramanian MK, Knoff W, Toney M (2000) J Mater Sci 35:573. doi: https://doi.org/10.1023/A:1004764024568 CrossRefGoogle Scholar
  10. 10.
    Cheng M, Chen W, Weerasooriya T (2004) Int J Solids Struct 42:6215CrossRefGoogle Scholar
  11. 11.
    Tsai CL, Daniel IM (1999) Exp Mech 39:284CrossRefGoogle Scholar
  12. 12.
    Sirichaisit J, Young RJ (1999) Polymer 40:3421CrossRefGoogle Scholar
  13. 13.
    Kitagawa T, Yabuki K, Young RJ (2001) Polymer 42:2101CrossRefGoogle Scholar
  14. 14.
    Li CT, Tietz J (1985) J Am Ceram Soc 68(8):C202CrossRefGoogle Scholar
  15. 15.
    Turek DE (1993) Polym Eng Sci 33(6):328CrossRefGoogle Scholar
  16. 16.
    Hadley DW, Ward IM, Ward J (1965) Proc R Soc A 285(1401):275Google Scholar
  17. 17.
    Pinnock PR, Ward IM, Wolfe JM (1966) Proc R Soc A 291(1425):267Google Scholar
  18. 18.
    Phoenix SL, Skelton J (1974) Text Res J 44:934CrossRefGoogle Scholar
  19. 19.
    McEwen E (1949) Philos Mag 40(303):454CrossRefGoogle Scholar
  20. 20.
    Kolsky H (1949) Proc Phys Soc B 62:676CrossRefGoogle Scholar
  21. 21.
    Gray G (2000) In: Kuhn H, Medlin D (eds) Classic split-Hopkinson pressure bar testing ASM handbook, vol 8. Material Park, OHGoogle Scholar
  22. 22.
    Gray G, Blumenthal WR (2000) In: Kuhn H, Medlin D (eds) Split-Hopkinson pressure bar testing of soft materials ASM handbook, vol 8. Material Park, OHGoogle Scholar
  23. 23.
    Karl FG (1975) Wave motion in elastic solids. Oxford University PressGoogle Scholar
  24. 24.
    Thomason JL, Kalinka G (2001) Compos Appl Sci Manuf 32:85CrossRefGoogle Scholar
  25. 25.
    Meretz S, Auersch W, Marotzke C, Schulz E, Hampe A (1993) Compos Sci Technol 48:285CrossRefGoogle Scholar
  26. 26.
    Frew DJ, Forrestal MJ, Chen W (2002) Exp Mech 42:93CrossRefGoogle Scholar
  27. 27.
    Frew DJ, Forrestal MJ, Chen W (2005) Exp Mech 45:186CrossRefGoogle Scholar

Copyright information

© United States Department of Defense 2009

Authors and Affiliations

  • Jaeyoung Lim
    • 1
  • James Q. Zheng
    • 2
  • Karl Masters
    • 2
  • Weinong W. Chen
    • 1
    Email author
  1. 1.Schools of Aeronautics/Astronautics and Materials EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.US Army PM-Soldier EquipmentHaymarketUSA

Personalised recommendations