Advertisement

Journal of Materials Science

, Volume 45, Issue 3, pp 633–640 | Cite as

The effect of multi-walled carbon nanotubes addition on the thermo-oxidative decomposition and flammability of PP/MWCNT nanocomposites

  • Azat D. RakhimkulovEmail author
  • S. M. Lomakin
  • I. L. Dubnikova
  • A. N. Shchegolikhin
  • E. Ya Davidov
  • R. Kozlowski
Article

Abstract

Studies of thermo-oxidative and fire-resistant properties of the polypropylene/multi-walled carbon nanotube composites (PP/MWCNT) prepared by melt intercalation are discussed. The effective kinetic parameters of the PP/MWCNT thermo-oxidative decomposition were computed according to the model-based kinetic analysis. The thermo-oxidative decomposition behavior of PP/MWCNT and stabilizing effect caused by addition of MWCNT has been investigated by means of TGA and EPR spectroscopy. Comparative analysis of the flammability characteristics for PP-clay/MWCNT nanocomposites was provided in order to emphasize the specific behavior of the nanocomposites.

Keywords

Electron Paramagnetic Resonance Heat Release Rate Flammability Cone Calorimeter Maximum Mass Loss Rate 

References

  1. 1.
    Shaffer MSP, Windle AH (1999) Adv Mater 11:937CrossRefGoogle Scholar
  2. 2.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Lett 76:2868CrossRefGoogle Scholar
  3. 3.
    Jin Z, Pramoda KP, Xu G, Goh SH (2001) Chem Phys Lett 337:43CrossRefGoogle Scholar
  4. 4.
    Thostenson ET, Chou TW (2002) J Phys D Appl Phys 35:L77CrossRefGoogle Scholar
  5. 5.
    Bin Y, Kitanaka M, Zhu D, Matsuo M (2003) Macromolecules 36:6213CrossRefGoogle Scholar
  6. 6.
    Potschke P, Dudkin SM, Alig I (2003) Polymer 44:5023CrossRefGoogle Scholar
  7. 7.
    Safadi B, Andrews R, Grulke EA (2002) J Appl Polym Sci 84:2660CrossRefGoogle Scholar
  8. 8.
    Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM (2003) J Mater Chem 13:491CrossRefGoogle Scholar
  9. 9.
    Watts PCP, Hsu WK, Randall DP, Kroto HW, Walton DRM (2002) Phys Chem Chem Phys 4:5655CrossRefGoogle Scholar
  10. 10.
    Jun Y, Yuhan L, Jinfeng W (2005) J Appl Polym Sci 98(3):1087CrossRefGoogle Scholar
  11. 11.
    Kashiwagi T, Grulke E, Hilding J, Groth K, Harris RH, Butler K, Shields JR, Kharchenko S, Douglas J (2004) Polymer 45:4227–4239CrossRefGoogle Scholar
  12. 12.
    Kashiwagi T, Grulke E, Hilding J, Harris RH Jr, Awad WH, Douglas J (2002) Macromol Rapid Commun 23:761CrossRefGoogle Scholar
  13. 13.
    Lomakin SM, Novokshonova LA, Brevnov PN, Shchegolikhin AN (2008) J Mater Sci 43(4):1340. doi: https://doi.org/10.1007/s10853-007-2295-1 CrossRefGoogle Scholar
  14. 14.
    Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Science 282:95CrossRefGoogle Scholar
  15. 15.
    Stevens JL, Huang AY, Peng H, Chiang IW, Khabashesku VN, Margrave JL (2003) Nano Lett 3:331CrossRefGoogle Scholar
  16. 16.
    Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS (2003) Chem Mater 15:3198CrossRefGoogle Scholar
  17. 17.
    Hu H, Ni Y, Montana V, Haddon RC, Parpura V (2004) Nano Lett 4:507CrossRefGoogle Scholar
  18. 18.
    Kong H, Gao C, Yan D (2004) J Am Chem Soc 126:412CrossRefGoogle Scholar
  19. 19.
    Holzinger M, Vostrowsky O, Hirsch A, Hennrich F, Kappes M, Weiss R, Jellen F (2001) Angew Chem Int Ed 40:4002CrossRefGoogle Scholar
  20. 20.
    Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) J Am Chem Soc 125:8566CrossRefGoogle Scholar
  21. 21.
    Yao Z, Braidy N, Botton GA, Adronov A (2003) J. Am.Chem. Soc. 125:16015CrossRefGoogle Scholar
  22. 22.
    Ying Y, Saini RK, Liang F, Sadana AK, Billups WE (2003) Org Lett. 5:1471CrossRefGoogle Scholar
  23. 23.
    Alvaro M, Atienzar P, de la Cruz P, Delgado JL, Garcia H, Langa F (2004) J Phys Chem B 108:12691CrossRefGoogle Scholar
  24. 24.
    Lomakin SM, Dubnikova IL, Berezina SM, Zaikov GE (2006) Polym Sci Ser A 48(1):72CrossRefGoogle Scholar
  25. 25.
    Krusic J, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Science 254:1183CrossRefGoogle Scholar
  26. 26.
    Opfermann J (2000) J Therm Anal Calorim 60(3):641CrossRefGoogle Scholar
  27. 27.
    Friedman HL (1965) J Polym Sci 6:175Google Scholar
  28. 28.
    Opfermann J, Kaisersberger E (1992) Thermochim Acta 11(1):167CrossRefGoogle Scholar
  29. 29.
    Echevskii GV, Kalinina NG, Anufrienko VF, Poluboyarov VA (1987) React Kinet Catal Lett 33(8):305CrossRefGoogle Scholar
  30. 30.
    Zhu J, Uhl F, Morgan AB, Wilkie CA (2001) Chem Mater 13:4649–4654CrossRefGoogle Scholar
  31. 31.
    Gilman GW, Jackson CL, Morgan AB, Harris RH, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips S (2000) Chem Mater 12:1866CrossRefGoogle Scholar
  32. 32.
    Kashiwagi T, Harris RH Jr, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR (2004) Polymer 45:881CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Azat D. Rakhimkulov
    • 1
    Email author
  • S. M. Lomakin
    • 1
  • I. L. Dubnikova
    • 2
  • A. N. Shchegolikhin
    • 1
  • E. Ya Davidov
    • 1
  • R. Kozlowski
    • 3
  1. 1.NM Emanuel Institute of Biochemical Physics of Russian Academy of SciencesMoscowRussia
  2. 2.NN Semenov Institute of Chemical Physics of Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Natural FibresPoznanPoland

Personalised recommendations