Journal of Materials Science

, Volume 45, Issue 8, pp 2009–2014 | Cite as

Effect of metal purity and testing procedure on surface tension measurements of liquid tin

  • Przemysław Fima
  • Rafał Nowak
  • Natalia Sobczak


The surface tension of liquid tin of three different grades of purity (99.85, 99.96, and 99.999%) was measured by the classical sessile drop method over the temperature range 523–1023 K, in heating and cooling regimes. The results obtained show that the metal purity affects the values of surface tension and its temperature dependence. The highest values of surface tension and smooth linear temperature dependence were obtained in cooling regime for tin of the highest purity. With increasing content of impurities, both surface tension and its temperature coefficient decrease while the scatter of the data increases. The surface tension values measured on heating regime show higher scatter, compared to those obtained in cooling regime, and the temperature dependence of the surface tension is curvilinear rather than linear.


Surface Tension Surface Tension Measurement Sessile Drop Method Cooling Regime Heating Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is sponsored by the Ministry of Science and Higher Education of Poland under the project No. PBZ/MNiSW/07/2006/56.


  1. 1.
    Keene BJ (1993) Int Mater Rev 38:157Google Scholar
  2. 2.
    Mills KC, Su YC (2006) Int Mater Rev 51:329CrossRefADSGoogle Scholar
  3. 3.
    Butler JAV (1932) Proc R Soc Lond A 135:348CrossRefADSGoogle Scholar
  4. 4.
    Speiser R, Poirer DR, Yeum K (1987) Scripta Metall Mater 21:687Google Scholar
  5. 5.
    Yuchu Su, Mills KC, Dinsdale A (2005) J Mater Sci 40:2185. doi: 10.1007/s10853-005-1930-y CrossRefADSGoogle Scholar
  6. 6.
    Novakovic R, Zivkovic D (2005) J Mater Sci 40:2251. doi: 10.1007/s10853-005-1942-7 CrossRefADSGoogle Scholar
  7. 7.
    Nogi K, Oishi K, Ogino K (1989) Mater Trans JIM 30:137Google Scholar
  8. 8.
    Tanaka T, Nakamoto M, Oguni R et al (2004) Z Metallkd 95:818Google Scholar
  9. 9.
    Fiori L, Ricci E, Arato E, Costa P (2005) J Mater Sci 40:2155. doi: 10.1007/s10853-005-1907-x CrossRefADSGoogle Scholar
  10. 10.
    Naidich YuV, Eremenko VN (1961) Fiz Met Metalloved 11:883Google Scholar
  11. 11.
    Sobczak N, Nowak R, Radziwill W et al (2008) Mater Sci Eng A 495:43CrossRefGoogle Scholar
  12. 12.
    Fima P, Wiater K, Kucharski M (2007) Surf Sci 601:3481CrossRefADSGoogle Scholar
  13. 13.
    Liggeri L, Passerone A (1989) High Temp Technol 7:82Google Scholar
  14. 14.
    Vivani M (1999) ICFAM-CNR technical report. CNR, GenoaGoogle Scholar
  15. 15.
    Schwaneke AE, Falke WL, Miller VR (1978) J Chem Eng Data 23:298CrossRefGoogle Scholar
  16. 16.
    Lucas LD (1972) Mem Sci Rev Met 69:395Google Scholar
  17. 17.
    Moser Z, Gąsior W, Pstruś J (2001) J Electron Mater 30:1104CrossRefADSGoogle Scholar
  18. 18.
    Kucharski M, Fima P (2005) Monatsh Chem 136:1841CrossRefGoogle Scholar
  19. 19.
    Novakovic R, Giuranno D, Ricci E et al (2008) Surf Sci 602:1957CrossRefADSGoogle Scholar
  20. 20.
    Sanchez SA, Narciso J, Louis E et al (2008) Mater Sci Eng A 495:187CrossRefGoogle Scholar
  21. 21.
    Passerone A, Ricci E, Sangiorgi R (1990) J Mater Sci 25:4266. doi: 10.1007/BF00581083 CrossRefADSGoogle Scholar
  22. 22.
    Ricci E, Passerone A (1993) Mater Sci Eng A161:31Google Scholar
  23. 23.
    Ricci E, Castello P, Passerone A et al (1994) Mater Sci Eng A178:99Google Scholar
  24. 24.
    Ricci E, Arato B, Passerone A, Costa P (2005) Adv Colloid Interface Sci 117:15CrossRefPubMedGoogle Scholar
  25. 25.
    Arato E, Ricci E, Costa P (2005) J Mater Sci 40:2133. doi: 10.1007/s10853-005-1904-0 CrossRefADSGoogle Scholar
  26. 26.
    Yuan ZF, Mukai K, Takagi K et al (2002) J Colloid Interface Sci 254:338CrossRefPubMedGoogle Scholar
  27. 27.
    Metzger G (1958) Z Phys Chem 211:1Google Scholar
  28. 28.
    White DWG (1966) Trans Metal Soc AIME 236:796Google Scholar
  29. 29.
    Rotenberg Y, Boruvka L, Neumann AW (1993) J Colloid Interface Sci 93:169CrossRefGoogle Scholar
  30. 30.
    Maze C, Burnet G (1969) Surf Sci 13:451CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Przemysław Fima
    • 1
    • 2
  • Rafał Nowak
    • 1
  • Natalia Sobczak
    • 1
  1. 1.Center for High Temperature StudiesFoundry Research InstituteKrakowPoland
  2. 2.Institute of Metallurgy and Materials SciencePolish Academy of SciencesKrakowPoland

Personalised recommendations