Dislocation motion in the early stages of high-temperature low-stress creep in a single-crystal superalloy with a small lattice misfit



Dislocation configurations at different creep stages (1100 °C and 137 MPa) in a superalloy TMS-75(+Ru) were studied in transmission electron microscopy (TEM) and the movement path of these creep-produced dislocations could be fully illustrated. Due to the small value of γ/γ′ lattice misfit, these dislocations cannot glide in the horizontal γ matrix channels by cross slip, but they mainly move by climbing around the γ′ cuboids. In the primary stage, the dislocations first move by slip in the γ-matrix channels. When they reach the γ′ cuboids, they move by climbing along the γ′ cuboid surfaces. In the secondary creep stage, dislocation reorientation in the (001) interfacial planes happens slowly, away from the deposition orientation of 〈110〉 to the misfit orientation of 〈100〉. The velocity of the reorientation is lower and a perfect γ/γ′ interfacial dislocation network cannot be formed quickly. This factor results in a large creep rate of the alloy during the secondary creep stage. The path for dislocation motion during the early creep stages consists of the following sequences: (i) climbing along the γ′ cuboid surface, (ii) deposition onto the (001) γ/γ′ interfacial plane, and (iii) reorientation from the 〈110〉 direction to the 〈100〉 direction.


Creep Rate Habit Plane Interfacial Plane Lattice Misfit Cross Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant No. 50971078).


  1. 1.
    Reichman S, Duhl DN, Maurer G, Antolovich S, Laud C (1988) Superalloys 1988. The minerals. Metals & Materials Society, Warrendale, PAGoogle Scholar
  2. 2.
    Antolovich SD, Stusrud RW, MacKay RA, Anton DL, Khan T, Kissinger RD, Klarstrom DL (1992) Superalloys 1992. The minerals. Metals & Materials Society, Warrendale, PAGoogle Scholar
  3. 3.
    McLean M (1985) Acta Metall 33:545CrossRefGoogle Scholar
  4. 4.
    Arzt E, Ashby MF (1982) Scr Metall 16:1285CrossRefGoogle Scholar
  5. 5.
    Lagneborg R (1973) Scr Metall 7:605CrossRefGoogle Scholar
  6. 6.
    Shewfelt RSW, Brown LM (1977) Phil Mag 35:945CrossRefADSGoogle Scholar
  7. 7.
    Rosler J, Arzt E (1988) Acta Metall 36:1043CrossRefGoogle Scholar
  8. 8.
    Kostka A, Malzer G, Eggeler G (2007) J Mater Sci 42:3951. doi: 10.1007/s10853-006-0166-9 CrossRefADSGoogle Scholar
  9. 9.
    Pollock TM, Argon AS (1992) Acta Metall Mater 40:1CrossRefGoogle Scholar
  10. 10.
    Nabarro FRN, de Villiers HL (1995) The physics of creep. Taylor & Francis Publishers, LondonGoogle Scholar
  11. 11.
    Link T, Feller-Kniepmeier M (1992) Metall Trans A 23A:99ADSGoogle Scholar
  12. 12.
    Sass V, Glatzel U, Feller-Kniepmeier M (1996) Acta Mater 44:1967CrossRefGoogle Scholar
  13. 13.
    Feller-Kniepmeier M, Link T, Poschmann I, Scheunemann-Frerker G, Schulze C (1996) Acta Mater 44:2397CrossRefGoogle Scholar
  14. 14.
    Sass V, Feller-Kniepmeier M (1998) Mater Sci Eng A A245:19Google Scholar
  15. 15.
    Matan N, Cox DC, Carter P, Rist MA, Rae CMF, Reed RC (1999) Acta Mater 47:1549CrossRefGoogle Scholar
  16. 16.
    Ardakani MG, Mclean M, Shollock BA (1999) Acta Mater 47:2593CrossRefGoogle Scholar
  17. 17.
    Rae CMF, Matan N, Cox DC, Rist MA, Reed RC (2000) Metall Mater Trans A 31A:2219CrossRefGoogle Scholar
  18. 18.
    Mayr C, Eggeler G, Dlouhy A (1996) Mater Sci Eng A A207:51Google Scholar
  19. 19.
    Eggeler G, Dlouhy A (1997) Acta Mater 45:4251CrossRefGoogle Scholar
  20. 20.
    Reed RC, Matan N, Cox DC, Rist MA, Rae CMF (1999) Acta Mater 47:3367CrossRefGoogle Scholar
  21. 21.
    Srinivasan R, Eggeler GF, Mills MJ (2000) Acta Mater 48:4867CrossRefGoogle Scholar
  22. 22.
    Shui L, Jin T, Tian S, Hu Z (2007) Mater Sci Eng A 454–455:461Google Scholar
  23. 23.
    Yeh AC, Rae CMF, Tin S (2004) In: Green KA, Pollock TM, Harada H, Howson TE, Reed RC, Schirra JJ, Walston S (eds) Superalloys 1992. The Minerals, Metals & Materials Society, Warrendale, PA, p 677Google Scholar
  24. 24.
    Svoboda J, Lukal P (1998) Acta Mater 46:3421CrossRefGoogle Scholar
  25. 25.
    Mughrabi H (1996) In: Arsenault RJ, Cole D, Gross T, Sizek H, Liaw P, Parameswaran S, Kostorz G (eds) TMS Johannes Weertman symposium, 267 ppGoogle Scholar
  26. 26.
    Epishin A, Link T (2004) Phil Mag 84:1979CrossRefADSGoogle Scholar
  27. 27.
    Zhang JX, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki S Jr (2002) Metall Mater Trans A 33A:3741CrossRefGoogle Scholar
  28. 28.
    Zhang JX, Wang JC, Harada H, Koizumi Y (2005) Acta Mater 53:4623CrossRefGoogle Scholar
  29. 29.
    Field RD, Pollock TM, Murphy WH (1992) In: Antolovich SD, Stusrud RW, MacKay RA, Anton DL, Khan T, Kissinger RD, Klarstrom DL (eds) Superalloys 1992. The Minerals, Metals & Materials Society, Warrendale, PA, p 557Google Scholar
  30. 30.
    Carry C, Strudel JL (1977) Acta Metall 25:767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. X. Zhang
    • 1
    • 2
  • H. Harada
    • 2
  • Y. Koizumi
    • 2
  • T. Kobayashi
    • 2
  1. 1.Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education)School of Materials Science and Engineering, Shandong UniversityJinanChina
  2. 2.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations