Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 483–489 | Cite as

High conductivity and low percolation threshold in polyaniline/graphite nanosheets composites

  • X. WuEmail author
  • S. Qi
  • J. He
  • G. Duan
Article

Abstract

An easy process for the synthesis of polyaniline/graphite nanosheets (PANI/NanoG) composites was developed. NanoG were prepared by treating the expanded graphite with sonication in aqueous alcohol solution. Scanning electron microscopy (SEM), X-ray diffraction techniques (XRD), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) were used to characterize the structures of NanoG and PANI/NanoG conducting composites. Electrical conductivity measurements indicated that the percolation threshold of PANI/NanoG composites at room temperature was as low as 0.32 vol.% and the conductivity of PANI/NanoG composites was 420 S/cm. The percolation theory, mean-field theory, and excluded volume theory were applied to interpret the conducting properties. Results showed that the low value of percolation threshold may be mainly attributed to nanoscale structure of NanoG forming conducting bridge in PANI matrix and there exists contact resistance in the percolation network formed within PANI/NanoG composites.

Keywords

PANI High Aspect Ratio Percolation Threshold Ultrasonic Irradiation Expandable Graphite 

Notes

Acknowledgements

The authors appreciate the help of Ms. Shi for SEM photograph and thank Ms. Li Liefeng for the TEM photograph. The authors are also thankful to the companies and relatives who kindly offered the materials and help.

References

  1. 1.
    Pinto G, Jimenez-Martin A (2001) Polym Compos 22:65CrossRefGoogle Scholar
  2. 2.
    Hepel M (1998) J Electrochem Soc 145:124CrossRefGoogle Scholar
  3. 3.
    Flandin L, Bidan G, Brechet Y, Cavaile JY (2000) Polym Compos 21:165CrossRefGoogle Scholar
  4. 4.
    Wessling B, Posdorfer J (1999) Electrochim Acta 44:2053CrossRefGoogle Scholar
  5. 5.
    Roldughin VI, Vysotskii VV (2000) Prog Org Coat 39:81CrossRefGoogle Scholar
  6. 6.
    Sapurina I, Mokeev M, Lavrentev V (2000) Eur Polym J 36:2321CrossRefGoogle Scholar
  7. 7.
    Wang DH, Qi SH, Wu YM (2009) J Appl Polym Sci 110:3162CrossRefGoogle Scholar
  8. 8.
    Xiao P, Xiao M, Liu PG, Gong KC (2000) Carbon 38:623CrossRefGoogle Scholar
  9. 9.
    Shioyama H, Tatsumi K, Iwashita N (1998) Synth Met 96:229CrossRefGoogle Scholar
  10. 10.
    Xiao M, Sun L, Liu J (2002) Polymer 43:2245CrossRefGoogle Scholar
  11. 11.
    Kirkpatrick S (1973) Rev Mod Phys 45:574CrossRefGoogle Scholar
  12. 12.
    Carmona F (1989) Physica A 157:461CrossRefGoogle Scholar
  13. 13.
    Celzard A, Mareche JF, Furdin G (2000) Phys D Appl Phys 33:3094CrossRefGoogle Scholar
  14. 14.
    Lu W, Lin HF, Wu DJ (2006) Polymer 47:4440CrossRefGoogle Scholar
  15. 15.
    Chen GH, Wu DJ, Weng WG (2001) Polym Int 50:980CrossRefGoogle Scholar
  16. 16.
    Wenge Z, Shing CW (2002) Polymer 73:6767Google Scholar
  17. 17.
    Chen GH, Wu DJ, Weng WG (2001) Acta Polym Sin 6:803Google Scholar
  18. 18.
    Xiao P, Xiao M, Gong K (2001) Polymer 42:4813CrossRefGoogle Scholar
  19. 19.
    Chen GH, Wu DJ, Weng WG (2001) J Appl Polym Sci 82:2506CrossRefGoogle Scholar
  20. 20.
    Pan YX, Yu ZZ, Ou YC (2000) J Polym Sci Part B Polym Phys 38:1626CrossRefGoogle Scholar
  21. 21.
    Tchmutin IA, Ponomarenko AT, Efimov ON (2003) Carbon 41:1391CrossRefGoogle Scholar
  22. 22.
    Du XS, Xiao M, Meng YZ (2004) Eur Polym J 40:1489CrossRefGoogle Scholar
  23. 23.
    Chen GH, Weng WG, Wu DJ (2004) Carbon 42:753CrossRefGoogle Scholar
  24. 24.
    Chen GH, Weng WG, Wu DJ (2003) Eur Polym J 39:2329CrossRefGoogle Scholar
  25. 25.
    Chen GH, Wu DJ, Weng WG (2003) Polymer 44:1781CrossRefGoogle Scholar
  26. 26.
    Habsuda J, Simon GP, Cheng YB (2002) Polymer 44:4627CrossRefGoogle Scholar
  27. 27.
    Wang JJ, Zhu MY, Outlaw-Ron A (2004) Carbon 42:2867CrossRefGoogle Scholar
  28. 28.
    Mo ZL, Zuo DD, Chen H (2007) Eur Polym J 43:300CrossRefGoogle Scholar
  29. 29.
    Stauffer D, Aharony A (1991) Introduction to percolation theory. Taylor & Francis, LondonGoogle Scholar
  30. 30.
    Helsing J, Helte A (1991) J Appl Phys 69:3583CrossRefGoogle Scholar
  31. 31.
    Ruschau GR, Newnham RE (1992) J Compos Mater 26:2727CrossRefGoogle Scholar
  32. 32.
    Balberg I, Anderson CH, Alexander S (1984) Phys Rev B 30:3933CrossRefGoogle Scholar
  33. 33.
    Hu YH, Liu JF, Dong HB (1998) Polym Sci Eng 14:59Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of ScienceNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations