Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 443–447 | Cite as

A first principles investigation of isotactic polypropylene

  • M. E. Stournara
  • R. RamprasadEmail author
Article

Abstract

Bulk isotactic polypropylene in the α form was studied using density functional theory-based computations. The computed physical structure of this system is in excellent agreement with available experimental data. The electronic band structure, ionization potential, and electron affinity were also determined. The impact of various types of chemical imperfections (including double bond, hydroxyl, and carbonyl defects) on the electronic structure of bulk isotactic polypropylene was considered. The carbonyl defect was found to cause the most significant impact, resulting in the deepest electron and hole traps.

Keywords

Electrostatic Potential Density Functional Theory Calculation Electron Affinity Valence Band Maximum Isotactic Polypropylene 

Notes

Acknowledgements

The authors acknowledge financial support of this work through a grant from the Office of Naval Research, and computational support through a National Science Foundation Teragrid Resource Allocation. Useful discussions with Dr. Steve Boggs, Dr. Lei Zhu, and Dr. Janet Ho are also gratefully acknowledged.

References

  1. 1.
    Moore Jr EP (1996) Polypropylene handbook. Hanser/Gardner Publications, OHGoogle Scholar
  2. 2.
    Hirano T, Nagai I, Tanaka S, Asakura M (1998) Biaxially oriented popypropylene film and a capacitor made thereof. US patent 5724222Google Scholar
  3. 3.
    Siefried W, Janocha S, Crass G (1981) Biaxially streched popypropylene composite film and electrical insulating film made therefrom. US Patent 4283453Google Scholar
  4. 4.
    Kovalchuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) J Mater Sci 43:7132. doi: https://doi.org/10.1007/s10853-008-3029-8 CrossRefGoogle Scholar
  5. 5.
    Kurahasi K, Matsuda Y, Miyashita Y, Demura T, Ueda A, Yoshino K (2006) Electr Engin Jpn 155:331Google Scholar
  6. 6.
    Nash JL (2004) Polym Engin Sci 28:862CrossRefGoogle Scholar
  7. 7.
    Natta G, Corradini P (1960) Nuovo Cimen Suppl 15:59Google Scholar
  8. 8.
    Immirizi A, Iannelli P (1988) Macromolecules 21:768CrossRefGoogle Scholar
  9. 9.
    Padden Jr FJ, Keith HD (1973) J Appl Phys 44:1217CrossRefGoogle Scholar
  10. 10.
    Padden Jr FJ, Keith HD (1966) J Appl Phys 37:4013CrossRefGoogle Scholar
  11. 11.
    Meille SV, Brückner S (1989) Nature 340:455CrossRefGoogle Scholar
  12. 12.
    Ferro DR, Bruckner JS, Meille SV, Ragazzi M (1992) Macromolecules 25:5231CrossRefGoogle Scholar
  13. 13.
    Lovinger AJ, Chua JO, Gryte CC (1977) J Polym Sci Polym Phys Ed 15:641CrossRefGoogle Scholar
  14. 14.
    Meille SV, Ferro DR, Brilckner JS, Lovinger AJ, Paddenl FJ (1994) Macromolecules 27:2615CrossRefGoogle Scholar
  15. 15.
    De Rosa C, Auriemma F, Corradini P (1996) Macromolecules 29:7452CrossRefGoogle Scholar
  16. 16.
    Lacks DJ (1996) Macromolecules 29:1849CrossRefGoogle Scholar
  17. 17.
    Rutledge GC, Suter UW (1992) Macromolecules 25:1546CrossRefGoogle Scholar
  18. 18.
    Borrmann A, Montanari B, Jones RO (1997) J Chem Phys 106:8545CrossRefGoogle Scholar
  19. 19.
    Ruuska H, Arola E, Kannus K, Rantala TT, Valkealahti S (2008) J Chem Phys 128:064109CrossRefGoogle Scholar
  20. 20.
    Flamant I, Mosley DH, Deleuze M, Andre JM, Delhale J (1994) Int J Quant Chem 528:469CrossRefGoogle Scholar
  21. 21.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  23. 23.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  24. 24.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  25. 25.
    Wang YX, Arai M, Sasaki T, Fan CZ (2007) Phys Rev B 75:104110CrossRefGoogle Scholar
  26. 26.
    Xie H, Wu X, Peng Z (1994) In: Properties and applications of dielectric materials, 4th international conference, p 39. doi: https://doi.org/10.1109/ICPADM.1994.413947
  27. 27.
    Serra S, Tossati E, Ialori S, Scandolo S, Santoro G (2000) Phys Rev B 62:4389CrossRefGoogle Scholar
  28. 28.
    Righi MC, Scandolo S, Serra S, Iarlori S, Tosatti, Santoro G (2001) Phys Rev Lett 87:076802CrossRefGoogle Scholar
  29. 29.
    Ramprasad R, Von Allmen P, Fonseca LC (1999) Phys Rev B 60:6023CrossRefGoogle Scholar
  30. 30.
    Cho YS, Lee HK, Shimc MJ, Kima SW (2000) Mater Chem Phys 66:70CrossRefGoogle Scholar
  31. 31.
    Mahrous S (2005) Polym Test 24:253CrossRefGoogle Scholar
  32. 32.
    Allen NS (1983) Degradation and stabilization of polyolefins. Elsevier Applied Science Publishers, LondonGoogle Scholar
  33. 33.
    Meunier M, Quirke N (2001) J Chem Phys 115:2876CrossRefGoogle Scholar
  34. 34.
    Anta LA, Mercelli G, Meunier M, Quirke N (2002) J Appl Phys 92:1002CrossRefGoogle Scholar
  35. 35.
    Miao MS, Zhang ML, Van Doren VE, Van Alsenoy C, Martins JL (2001) J Chem Phys 115:11317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations