Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 418–428 | Cite as

Kinetic parameters during the tempering of low-alloy steel through the non-isothermal dilatometry

  • J. A. V. Leiva
  • E. V. MoralesEmail author
  • E. Villar-Cociña
  • C. A. Donis
  • Ivani de S. Bott
Article

Abstract

The kinetic study of the tempering reactions of a low-alloy steel (AISI 1050) was carried out through non-isothermal dilatometry. The kinetic parameters of the first and third stages on tempering (here referred to as processes I and II) are calculated by procedures which assume that the nucleation and growth reactions obey a Kolmogorov–Johnson–Mehl–Avrami (KJMA) kinetic model. The recipes to obtain the kinetic parameters (E, K0, n) of the reactions on tempering are presented. The first stage of tempering is characterized by the growth of the transition carbide nuclei formed during the quenching, n = 1 (site saturation situation). This stage is controlled by the pipe diffusion of the iron atoms. The third stage of tempering is characterized by the cementite nucleation on dislocations due to the gradual dissolution of the transition carbide, n = 0.66. The cementite growth is controlled by diffusion of the iron atoms through dislocations and in the matrix.

Keywords

Austenite Cementite Inflection Point Iron Atom Dilatometry 

Notes

Acknowledgements

The authors wish to thank Dr. M. LLanes for reading through the manuscript. They also wish to thank Engineering School of the University of São Paulo in São Carlos, Brazil by the dilatometry experiments and Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES) in Brazil for the financial support offered by the project CAPES-MES/Cuba No. 046/08.

References

  1. 1.
    Starink MJ (2003) Thermochim Acta 404:163CrossRefGoogle Scholar
  2. 2.
    Koga N, Sestak J, Malek J (1991) Thermochim Acta 188:333CrossRefGoogle Scholar
  3. 3.
    Malek J, Criado JM (1990) Thermochim Acta 164:199CrossRefGoogle Scholar
  4. 4.
    Flynn JH (1992) Thermochim Acta 203:519CrossRefGoogle Scholar
  5. 5.
    Vyazovkin S (2000) Thermochim Acta 355:155CrossRefGoogle Scholar
  6. 6.
    Mittemeijer EJ (1992) J Mater Sci 27:3977. doi: https://doi.org/10.1007/BF01105093 CrossRefGoogle Scholar
  7. 7.
    Kissinger HE (1956) J Res Natl Bur Stand 57:217CrossRefGoogle Scholar
  8. 8.
    Kissinger HE (1957) Anal Chem 29:1702CrossRefGoogle Scholar
  9. 9.
    Órfáo JJM (2007) AIChE J 53:2905CrossRefGoogle Scholar
  10. 10.
    Friedman HL (1964) J Polym Sci C6:183Google Scholar
  11. 11.
    Sewry JD, Brown ME (2002) Thermochim Acta 390:217CrossRefGoogle Scholar
  12. 12.
    Mittemeijer EJ, Van Gent A, Van der Schaaf PJ (1986) Metall Trans A 17A:1441CrossRefGoogle Scholar
  13. 13.
    Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Int Mater Rev 52:193CrossRefGoogle Scholar
  14. 14.
    Tomita Y (1989) J Mater Sci 24:731. doi: https://doi.org/10.1007/BF01107467 CrossRefGoogle Scholar
  15. 15.
    Robson JD (1996) Modelling of carbide and laves phase precipitation in 9–12 wt% chromium steels. Ph.D. Thesis, University of Cambridge, p 31Google Scholar
  16. 16.
    Kolmogorov AN (1937) Izv Akad Nauk USSR Ser Matemat 1:355Google Scholar
  17. 17.
    Johnson WA, Mehl RF (1939) Trans AIME 135:416Google Scholar
  18. 18.
    Avrami M (1939) J Chem Phys 7:1103CrossRefGoogle Scholar
  19. 19.
    Cheng L, Brakman CM, Korevaar BM, Mittemeijer EJ (1988) Metall Trans A 19A:2415CrossRefGoogle Scholar
  20. 20.
    Farjas J, Roura P (2006) Acta Mater 54:5573CrossRefGoogle Scholar
  21. 21.
    Sestak J, Brown A, Rihak V, Berggren G (1969) Thermal analysis. Academic Press, New York, p 1035CrossRefGoogle Scholar
  22. 22.
    Morales EV, Vega LJ, Villar CE, Antiquera MJ, Fadragas RC (2005) Scripta Mater 52:217CrossRefGoogle Scholar
  23. 23.
    Stevens W, Haynes AG (1956) J Iron Steel Inst 183:349Google Scholar
  24. 24.
    Hirotsu Y, Nagakura S (1972) Acta Metall 20:645CrossRefGoogle Scholar
  25. 25.
    Christian JW (1975) The theory of transformations in metals and alloys. Pergamon Press, Oxford, p 542 (Part 1, Chapter 12)Google Scholar
  26. 26.
    Cohen M (1970) Trans JIM II:145CrossRefGoogle Scholar
  27. 27.
    Honeycombe RWK (1981) Steels microstructure and properties. Edward Arnold Editions, London, p 142 (Chapter 8)Google Scholar
  28. 28.
    Buffington FS, Hirano K, Cohen M (1961) Acta Metall 9:533CrossRefGoogle Scholar
  29. 29.
    Tomita Y (1988) Mater Sci Technol 4:977CrossRefGoogle Scholar
  30. 30.
    Livshits BG, Kraposhin VS, Linetski YaL (1982) Physical properties of metals and alloys. Mir Ed, Moscow, p 381 (Chapter 6)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. A. V. Leiva
    • 1
  • E. V. Morales
    • 1
    Email author
  • E. Villar-Cociña
    • 1
  • C. A. Donis
    • 2
  • Ivani de S. Bott
    • 3
  1. 1.Department of PhysicsLas Villas Central UniversitySanta ClaraCuba
  2. 2.Computer Science DepartmentLas Villas Central UniversitySanta ClaraCuba
  3. 3.Department of Materials Science and MetallurgyCatholic University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations