Microstructure and mechanical properties of SiCP/SiC and SiCW/SiC composites by CVI
- 256 Downloads
- 15 Citations
Abstract
37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were prepared by chemical vapor infiltration (CVI) process through depositing SiC matrix in the porous particulate and whisker preforms, respectively. The particulate (or whisker) preforms has two types of pores; one is small pores of several micrometers at inter-particulates (or whiskers) and the other one is large pores of hundreds micrometers at inter-agglomerates. The microstructure and mechanical properties of 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were studied. 37.2 vol.% SiCP/SiC (or 25.0 vol.% SiCW/SiC) consisted of the particulate (or whisker) reinforced SiC agglomerates, SiC matrix phase located inter-agglomerates and two types of pores located inter-particulates (or whiskers) and inter-agglomerates. The density, fracture toughness evaluated by SENB method, and flexural strength of 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were 2.94 and 2.88 g/cm3, 6.18 and 8.34 MPa m1/2, and 373 and 425 MPa, respectively. The main toughening mechanism was crack deflection and bridging.
Keywords
Fracture Toughness Flexural Strength Crack Deflection Chemical Vapor Infiltration Critical Aspect RatioNotes
Acknowledgements
The authors acknowledge the support of this work by the Natural Science Foundation of China under Grant No. 90405015.
References
- 1.Lee SK, Kim DY (2002) J Mater Sci Lett 21:1343CrossRefGoogle Scholar
- 2.Kim YW, Kim JY, Rhee SH, Kim DY (2000) J Eur Ceram Soc 20:945CrossRefGoogle Scholar
- 3.Cho KS, Choi HJ, Lee JG, Kim YW (1998) Ceram Int 24:299CrossRefGoogle Scholar
- 4.Padure P (1994) J Am Ceram Soc 77(2):519CrossRefGoogle Scholar
- 5.Tani T (1999) Composites Part A 30:419CrossRefGoogle Scholar
- 6.Strecker K, Hoffmann MJ (2005) J Eur Ceram Soc 25:801CrossRefGoogle Scholar
- 7.Dong SM, Jiang DL, Tan SH, Guo JK (1995) Ceram Int 21:451CrossRefGoogle Scholar
- 8.Pan YB, Qiu JH, Kawagoe M, Morita M, Tan SH, Jiang DL (1999) J Eur Ceram Soc 19:1789CrossRefGoogle Scholar
- 9.Mahfuz H, Zadoo DP, Wilks F, Maniruzzaman Md, Jeelani S (1995) J Mater Sci 30:2406. doi: https://doi.org/10.1007/BF01184593 CrossRefGoogle Scholar
- 10.Hirota K, Hara H, Kato M (2007) Mater Sci Eng A 458:216CrossRefGoogle Scholar
- 11.Morisada Y, Miyamoto Y, Takaura Y, Hirota K, Tamari N (2007) Int J Refract Met Hard Mater 25:322CrossRefGoogle Scholar
- 12.Faber KT, Evens AG (1983) Acta Metall 31(4):565CrossRefGoogle Scholar
- 13.Faber KT, Evens AG (1983) Acta Metall 31(4):577CrossRefGoogle Scholar
- 14.Becher PF, Hsueh CH, Angelini P, Tiegs TN (1988) J Am Ceram Soc 71(12):1050CrossRefGoogle Scholar
- 15.Paik U, Park HC, Choi SC, Ha CG, Kim JW, Jung YG (2002) Mater Sci Eng A 34:267CrossRefGoogle Scholar
- 16.Magnani G, Beltrami G, Minoccari GL, Pilotti LJ (2001) J Eur Ceram Soc 21(5):633CrossRefGoogle Scholar
- 17.Lillo TM, Bailey DW, Laughton DA, Chu HS, Harrison WM (2003) Ceram Eng Sci Proc 24(3):359CrossRefGoogle Scholar
- 18.Taguchi SP, Ribeiro S, Balestra RM, Rodrigues D Jr (2007) Mater Sci Eng A 454–455:24CrossRefGoogle Scholar
- 19.Naslain R (2004) Compos Sci Technol 64(2):155CrossRefGoogle Scholar
- 20.Besmann TM, Lowden RA, Stinton DP (1993) In: Naslain R, Lamon J, Doumeingts D (eds) High temperature ceramic matrix composites. Woodhead Publishing Ltd, Cambridge, p 215Google Scholar
- 21.Lackey J, Hanigofsky JA, Freeman GB, Hardin RD, Prasad A (1995) J Am Ceram Soc 78(6):1564CrossRefGoogle Scholar
- 22.Xu YD, Zhang LT (1997) J Am Ceram Soc 80(6):1897Google Scholar
- 23.Hua YF, Zhang LT, Cheng LF, Li ZX, Du JH (2009) Comput Mater Sci 46:133CrossRefGoogle Scholar
- 24.She JH, Jiang DL, Tan SH, Guo JK (1995) Key Eng Mater 108–110:45CrossRefGoogle Scholar
- 25.Hua YF, Zhang LT, Cheng LF, Wang J (2006) Mater Sci Eng A 428:346CrossRefGoogle Scholar
- 26.Li HB, Zhang LT, Cheng LF, Wang YG, Yu ZY, Huang MH, Tu HB, Xia HP (2008) J Mater Sci 43:2806. doi: https://doi.org/10.1007/s10853-008-2539-8 CrossRefGoogle Scholar
- 27.Kodama H, Miyoshi T (1992) J Am Ceram Soc 75(6):1558CrossRefGoogle Scholar
- 28.Tanaka I, Pezzotti G, Miyamoto Y, Okamoto T (1991) J Mater Sci 26:208. doi: https://doi.org/10.1007/BF00576053 CrossRefGoogle Scholar
- 29.Ueno K, Kose S, Kinoshita M (1993) J Mater Sci 28:5770. doi: https://doi.org/10.1007/BF00365180 CrossRefGoogle Scholar
- 30.Yanai T, Ishizaki K (1996) Mater Trans JIM 37(12):1802CrossRefGoogle Scholar
- 31.Kim YW (2001) J Am Ceram Soc 84(9):2060CrossRefGoogle Scholar
- 32.Zhu SM, Fahrenholtz WG, Hilmas GE (2007) J Eur Ceram Soc 27:2077CrossRefGoogle Scholar
- 33.Baldacim SA, Santos C, Silva OMM, Silva CRM (2003) Int J Refract Metals Hard Mater 21:233CrossRefGoogle Scholar
- 34.Dong SM, Jiang DL, Tan SH, Guo JK (1999) J Inorg Mater 14(1):61Google Scholar
- 35.Baldacim SA, Cairo CAA, Silva CRM (2001) J Mater Process Technol 119:273CrossRefGoogle Scholar
- 36.Goto Y, Tsuge A (1993) J Am Ceram Soc 76(6):1420CrossRefGoogle Scholar