Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 341–347 | Cite as

Physical and thermal effects on the shape memory behaviour of auxetic open cell foams

  • M. BianchiEmail author
  • F. Scarpa
  • C. W. Smith
  • George R. Whittell
Article

Abstract

This study examines the processing envelope related to auxetic open cell foams and their shape memory properties, with the analysis of four different phases of multi-component foams (conventional, 1st auxetic, returned and 2nd auxetic). The analysis of the shape memory and its correlation with negative Poisson’s ratio behaviour are a novelty in the field of auxetic materials. This study describes the differences between the multi-component foams used as precursors for each phase, exploring their mechanical and thermal characteristics at each stage of the conversion. The results show the important differences related to the mechanical behaviour of the foams, due essentially to the axial compression adopted during the manufacturing process.

Keywords

Foam Differential Scanning Calorimetry Energy Dissipation Compression Ratio Axial Compression 

Notes

Acknowledgement

This study has been sponsored by the GWR—Rolls-Royce plc BERRIMAT (Bristol Exeter Rolls-Royce Interface in Materials) Project ID 297.

References

  1. 1.
    Lakes RS (1987) Science 235:1038CrossRefGoogle Scholar
  2. 2.
    Evans KE (1991) Endeav New Ser 15(4):170CrossRefGoogle Scholar
  3. 3.
    Yang W, Li ZM, Shi W, Xie BH, Yang MB (2004) J Mater Sci 39:3269. doi: https://doi.org/10.1023/B:JMSC.0000026928.93231.e0 CrossRefGoogle Scholar
  4. 4.
    Evans KE, Alderson A (2000) Adv Mater 12(9):617CrossRefGoogle Scholar
  5. 5.
    Lakes RS, Elms K (1993) J Compos Mater 27:1193CrossRefGoogle Scholar
  6. 6.
    Lakes RS (1993) ASME J Mech Des 115:696CrossRefGoogle Scholar
  7. 7.
    Bezazi A, Scarpa F (2007) Int J Fatigue 29(7):922CrossRefGoogle Scholar
  8. 8.
    Bezazi A, Scarpa F (2007) Int J Fatigue 31(3):488CrossRefGoogle Scholar
  9. 9.
    Howell B, Prendergast P, Hansen (1994) App Acoust 43(2):141CrossRefGoogle Scholar
  10. 10.
    Scarpa F, Ciffo LG, Yates JR (2004) Smart Mater Struct 13(1):49CrossRefGoogle Scholar
  11. 11.
    Scarpa F, Smith FC (2004) J Intell Mater Syst Struct 15(12):973CrossRefGoogle Scholar
  12. 12.
    Scarpa F, Bullough WA, Lumley P (2004) J Mech Eng Sci 218(2):241CrossRefGoogle Scholar
  13. 13.
    Lipsett AW, Beltzer J (1988) J Acoust Soc Am 84:2179CrossRefGoogle Scholar
  14. 14.
    Chen CP, Lakes RS (1989) Cell Polym 8:343Google Scholar
  15. 15.
    Chen CP, Lakes RS (1993) J Mater Sci 28:4288. doi: https://doi.org/10.1007/BF01154934 CrossRefGoogle Scholar
  16. 16.
    Chen CP, Lakes RS (1996) J Eng Mater Technol 118:285CrossRefGoogle Scholar
  17. 17.
    Wang YC, Lakes RS, Butenhoff A (2001) Cell Polym 20:373CrossRefGoogle Scholar
  18. 18.
    Alderson A, Alderson KL, Davies PJ, Smart GM (2005) In: Proceedings of IMECE2005. Paper IMECE2005-82404, Orlando, FL, 5–11 NovemberGoogle Scholar
  19. 19.
    Bianchi M, Scarpa F, Smith CW (2008) J Mater Sci 43(17):5851. doi: https://doi.org/10.1007/s10853-008-2841-5 CrossRefGoogle Scholar
  20. 20.
    Bianchi M, Scarpa F, Smith CW (2009) Acta Mater. doi: https://doi.org/10.1016/j.actamat.2009.09.063 CrossRefGoogle Scholar
  21. 21.
    Scarpa F, Pastorino P, Garelli A, Patsias S, Ruzzene M (2005) Phys Status Solidi B 242(3):681CrossRefGoogle Scholar
  22. 22.
    Odian G (2004) Principles of polymerization, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  23. 23.
    Lou N, Wang D-N, Ying S-K (1997) Macromolecules 30:4405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Bianchi
    • 1
    Email author
  • F. Scarpa
    • 1
  • C. W. Smith
    • 2
  • George R. Whittell
    • 3
  1. 1.Department of Aerospace EngineeringUniversity of BristolBristolUK
  2. 2.School of Engineering, Computing and MathematicsUniversity of ExeterExeterUK
  3. 3.School of ChemistryUniversity of BristolBristolUK

Personalised recommendations