Advertisement

Journal of Materials Science

, Volume 45, Issue 2, pp 326–333 | Cite as

A semi-empirical unified model of strain fatigue life for insulation plastics

  • Xiaofan Wei
  • Shing-Chung WongEmail author
  • Sunil Bandaru
Article

Abstract

The paper focuses on modeling the strain fatigue lives of three commonly used cable insulation polymers, namely (1) polyvinyl chloride, (2) crosslinked polyethylene, and (3) polyphenylene ether under selected strain and temperature ranges. On the basis of results obtained from their fatigue tests, Coffin–Manson model, mean/maximum strain fatigue model, and a set of new semi-empirical equations were applied to establish the relationship between fatigue lives and strains. The unified strain model, herein we name it the Wei–Wong model, is developed to predict the fatigue lives of three polymers studied and their prediction capability was examined using our experimental data. It was found that the proposed Wei–Wong model can provide a better life prediction compared to the experimental data and other methods in the literature at selected temperatures, namely −40, 25, and 65 °C.

Keywords

Fatigue Fatigue Life Strain Amplitude Strain Model Fatigue Life Prediction 

Notes

Acknowledgments

The authors wish to thank Pei Chen and Paul Lam for assisting in the preparation of this manuscript.

References

  1. 1.
    Akovali G, Bernardo CA, Leidner J, Leszek AU, Xanthos M (eds) (1998) Frontiers in the science and technology of polymer recycling. Kluwer Academic Publishers, DordrechtGoogle Scholar
  2. 2.
    Brandrup J, Bittner M, Michaeli W, Menges G (eds) (1996) Recycling and recovery of plastics. Hanser Gardner Publications, New York, pp 650–668Google Scholar
  3. 3.
    Chen N, Wan C, Zhang Y (2004) Polym Test 23:169CrossRefGoogle Scholar
  4. 4.
    Kim C, Jin Z, Jiang P, Zhu Z, Wang G (2006) Polym Test 25:553CrossRefGoogle Scholar
  5. 5.
    Wang Y, Cheng S, Li W, Huang C, Li F, Shi J (2007) Polym Bull 59:391CrossRefGoogle Scholar
  6. 6.
    Kubo K, Masamoto J (2002) J Appl Polym Sci 86:3030CrossRefGoogle Scholar
  7. 7.
    Coffin LF (1954) Trans Am Soc Mech Eng 76:931Google Scholar
  8. 8.
    Manson SS (1965) Exp Mech 5(7):193CrossRefGoogle Scholar
  9. 9.
    Tomkins B, Biggs WD (1969) J Mater Sci 4:532CrossRefGoogle Scholar
  10. 10.
    Rosenkranz P, Humer K, Weber HW (2000) Cryogenics 40:155CrossRefGoogle Scholar
  11. 11.
    Kultural SE, Eryurek IB (2007) Mater Des 28:816CrossRefGoogle Scholar
  12. 12.
    Takahara A, Yamada K, Kajiyama T, Takayanagi M (1980) J Appl Polym Sci 25:597CrossRefGoogle Scholar
  13. 13.
    Epaarachchi JA, Clausen PD (2003) Compos A 34:313CrossRefGoogle Scholar
  14. 14.
    Xiao X (2008) Polym Test 27:284CrossRefGoogle Scholar
  15. 15.
    Wong SC, Bandaru S (2009) J Mater Sci 44:365. doi: https://doi.org/10.1007/s10853-008-3152-6 CrossRefGoogle Scholar
  16. 16.
    Kang KW, Goo BC, Kim JH, Kim HS, Kim JK (2007) Key Eng Mater 353–358:142CrossRefGoogle Scholar
  17. 17.
    Ivanov SS, Ivanov ES (1976) Fiziko-Khimicheskaya Mekhanika Materialov 12:106Google Scholar
  18. 18.
    Shi XQ, Pang HLJ, Zhou W, Wang ZP (2000) Int J Fatigue 22:217CrossRefGoogle Scholar
  19. 19.
    Pang HLJ, Xiong BS, Low TH (2004) Thin Solid Films 462–463:408CrossRefGoogle Scholar
  20. 20.
    Kallmeyer AR, Stephens RI (1995) J Compos Mater 29:1621CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of AkronAkronUSA

Personalised recommendations