Advertisement

Journal of Materials Science

, Volume 45, Issue 1, pp 242–250 | Cite as

Brittleness of materials: implications for composites and a relation to impact strength

  • Witold Brostow
  • Haley E. Hagg LoblandEmail author
Article

Abstract

Brittleness of materials—whether it occurs naturally or with aging—affects significantly performance and manifests itself in various properties. In the past, brittleness was defined qualitatively, but now a definition of brittleness for viscoelastic materials exists, enabling analysis of all types of polymer-based materials. The quantity brittleness, B, has been evaluated for neat thermoplastics, but here composites and metal alloys are also assessed. The physical significance of brittleness is connected to the dimensional stability of materials. The connections of brittleness to tensile elongation and to fatigue are explored while its relationship to surface properties—specifically wear by repetitive scratching—is examined more closely. The economic impact of wear results in monetary loss associated with failure and reduced service life of plastic parts—thus its connection to brittleness finds use across a broad spectrum of industrial applications which utilize plastics for manufacturing, processing, etc. We also demonstrate a correspondence between impact strength (Charpy or Izod) and brittleness of polymers. It is shown that the assumption hardness is equivalent to brittleness is inaccurate; this fact has important implications for interpreting the results of mechanical testing of viscoelastic materials.

Keywords

PMMA Storage Modulus Free Volume Impact Strength Dynamic Mechanical Analysis 

Notes

Acknowledgements

The authors thank the Robert A. Welch Foundation for funding (Grant # B-1203) and the US Department of Defense for a National Defense Science and Engineering Graduate Fellowship (to H.E.H.L.).

References

  1. 1.
    Fiebig J, Gahleitner M, Paulik C, Wolfschwenger J (1999) Polym Test 18:257CrossRefGoogle Scholar
  2. 2.
    Ho CH, Vu-Khanh T (2004) Theor Appl Fract Mech 41:103CrossRefGoogle Scholar
  3. 3.
    Wilson KV Jr, Smith BL, Macdonald JM, Schoonover JR, Castro JM, Smith ME, Cournoyer ME, Marx R, Steckle WP Jr (2004) Polym Degrad Stab 84:439CrossRefGoogle Scholar
  4. 4.
    Schwarz I, Stranz M, Bonnet M, Petermann J (2001) Colloid Polym Sci 279:506CrossRefGoogle Scholar
  5. 5.
    Broza G, Kwiatkowska M, Roslaniec Z, Schulte K (2005) Polymer 46:5860CrossRefGoogle Scholar
  6. 6.
    Bunsell AR, Renard J (2005) Fundamentals of fibre reinforced composite materials. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  7. 7.
    Bismarck A, Mohanty AK, Aranberri-Askargorta I, Czapla S, Misra M, Hinrichsen G, Springer J (2001) Green Chem 3:100CrossRefGoogle Scholar
  8. 8.
    Ho T, Wynne KJ (1992) Macromolecules 25:3521CrossRefGoogle Scholar
  9. 9.
    Brostow W, Cassidy PE, Hagg HE, Jaklewicz M, Montemartini PE (2001) Polymer 42:7971CrossRefGoogle Scholar
  10. 10.
    Brostow W, Bujard B, Cassidy PE, Hagg HE, Montemartini PE (2002) Mater Res Innov 6:7CrossRefGoogle Scholar
  11. 11.
    Janik H, Palys B, Petrovic ZS (2003) Macromol Rapid Commun 24:265CrossRefGoogle Scholar
  12. 12.
    Amir N, Levina A, Silverstein MS (2007) J Polym Sci Chem 45:4264CrossRefGoogle Scholar
  13. 13.
    Sun H, Cooke RS, Bates WD, Wynne KJ (2995) Polymer 46:8872CrossRefGoogle Scholar
  14. 14.
    Deanin RD, Crugnola AM (eds) (1976) Brittleness and toughness of plastics. American Chemical Society, Washington, DCGoogle Scholar
  15. 15.
    Yee AF, Olszewski WV, Miller S (1976) In: Deanin RD, Crugnola AM (eds) Toughness and brittleness of plastics. American Chemical Society, Washington, DCGoogle Scholar
  16. 16.
    Matsuoka S (1976) In: Deanin RD, Crugnola AM (eds) Toughness and brittleness of plastics. American Chemical Society, Washington, DCGoogle Scholar
  17. 17.
    Menges G, Boden H-E (1986) In: Brostow W, Corneliussen RD (eds) Failure of plastics. Hanser Publishers, MunichGoogle Scholar
  18. 18.
    Wu S (1992) Polym Int 29:229CrossRefGoogle Scholar
  19. 19.
    Mikos AG, Peppas NA (1988) J Chem Phys 88:1337CrossRefGoogle Scholar
  20. 20.
    Mikos AG, Peppas NA (1989) J Mater Sci 24:1612. doi: https://doi.org/10.1007/BF01105680 CrossRefGoogle Scholar
  21. 21.
    Mikos AG, Peppas NA (1989) J Mater Sci Lett 8:833CrossRefGoogle Scholar
  22. 22.
    Mikos AG, Peppas NA (1991) J Polym Sci B Polym Phys 29:837CrossRefGoogle Scholar
  23. 23.
    Quinn JB, Quinn GD (1997) J Mater Res 32:4331Google Scholar
  24. 24.
    Werwa E (2000) J Mater Educ 22:18Google Scholar
  25. 25.
    Hagg Lobland HE (2006) J Mater Educ 28:29Google Scholar
  26. 26.
    Brostow W, Hagg Lobland HE, Narkis M (2006) J Mater Res 21:2422CrossRefGoogle Scholar
  27. 27.
    Brostow W, Hagg Lobland HE (2008) Polym Eng Sci 48:1982CrossRefGoogle Scholar
  28. 28.
    Brostow W, Keselman M, Mironi-Harpaz I, Narkis M, Peirce R (2005) Polymer 46:5058CrossRefGoogle Scholar
  29. 29.
    Brostow W, Narkis M, Olea-Mejia O (2004) ANTEC annual technical conference of the society of plastics engineers, Society of Plastics Engineers, ChicagoGoogle Scholar
  30. 30.
    Brostow W, Chonkaew W, Menard KP (2006) Mater Res Innov 10:389CrossRefGoogle Scholar
  31. 31.
    Brostow W (1979) Science of materials. Wiley, New YorkGoogle Scholar
  32. 32.
    Nogales A, Broza G, Roslaniec Z, Schulte K, Šics I, Hsiao BS, Sanz A, García-Gutiérrez MC, Rueda DR, Domingo C, Ezquerra TA (2004) Macromolecules 37:7669CrossRefGoogle Scholar
  33. 33.
    Brostow W, Deborde J-L, Jaklewicz M, Olszynski P (2003) J Mater Educ 24:119Google Scholar
  34. 34.
    Brostow W, Gorman BP, Olea-Mejia O (2007) Mater Lett 61:1333CrossRefGoogle Scholar
  35. 35.
    Brostow W, Buchman A, Buchman E, Olea-Mejía O (2008) Polym Eng Sci 49:1977CrossRefGoogle Scholar
  36. 36.
    Beall GW, Powell CE, Hancock J, Kindinger M, McKenzie HR, Bray AV, Booth CJ (2007) Appl Clay Sci 37:295CrossRefGoogle Scholar
  37. 37.
    Gedde UW (2001) Polymer physics. Kluwer, DordrechtGoogle Scholar
  38. 38.
    Lucas EF, Soares BG, Monteiro E (2001) Caracterização de Polimeros e-papers, Rio de JaneiroGoogle Scholar
  39. 39.
    Menard KP (2000) In: Brostow W (ed) Performance of plastics. Hanser, Munich-CincinattiGoogle Scholar
  40. 40.
    Menard KP (2008) Dynamic mechanical analysis—an introduction. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  41. 41.
    Brostow W, Damarla G, Howe J, Pietkiewicz D (2004) e-Polymers 025:1Google Scholar
  42. 42.
    Bermudez MD, Brostow W, Carrion-Vilches FJ, Cervantes JJ, Damarla G, Perez MJ (2005) e-Polymers 003:1Google Scholar
  43. 43.
    Bermudez MD, Brostow W, Carrion-Vilches FJ, Cervantes JJ, Pietkiewicz D (2005) e-Polymers 001:1Google Scholar
  44. 44.
    Brostow W, Chonkaew W, Rapoport L, Soifer Y, Verdyan A (2007) J Mater Res 22:2483CrossRefGoogle Scholar
  45. 45.
    Brostow W, Chonkaew W, Mirshams R, Srivastava A (2008) Polym Eng Sci 48:2060CrossRefGoogle Scholar
  46. 46.
    Rigney DA, Fu XY, Hammerberg JE, Holian BL, Falk ML (2003) Scripta Mater 49:977CrossRefGoogle Scholar
  47. 47.
    Rigney DA (2000) Wear 245:1CrossRefGoogle Scholar
  48. 48.
    Brostow W (2001) In: Brostow W (ed) Performance of plastics. Hanser, Munich–CincinnatiGoogle Scholar
  49. 49.
    Flory PJ (1985) Selected works. Stanford University Press, Stanford, CA, USAGoogle Scholar
  50. 50.
    Brostow W, D’Souza NA, Kubát J, Maksimov R (1999) J Chem Phys 110:9706CrossRefGoogle Scholar
  51. 51.
    Akinay AE, Brostow W (2001) Polymer 42:4527CrossRefGoogle Scholar
  52. 52.
    Akinay AE, Brostow W, Castaño VM, Maksimov R, Olszynski P (2002) Polymer 43:3593CrossRefGoogle Scholar
  53. 53.
    Akinay AE, Brostow W, Maksimov R (2001) Polymer 41:977Google Scholar
  54. 54.
    Hartmann B, Haque MA (1985) J Appl Phys 58:2831CrossRefGoogle Scholar
  55. 55.
    Litt MH, Tobolsky AV (1967) J Macromol Sci Phys 1:433CrossRefGoogle Scholar
  56. 56.
    Zoller P, Walsh D (1995) Standard pressure–volume–temperature data for polymers technomic. Lancaster, PAGoogle Scholar
  57. 57.
    Brostow W (2000) In: Brostow W, Corneliussen RD (eds) Failure of plastics. Hanser, MunichGoogle Scholar
  58. 58.
    Brostow W (2007) In: Mark JE (ed) Physical properties of polymers handbook. Springer, NYGoogle Scholar
  59. 59.
    Beake BD, Bell GA, Brostow W, Chonkaew W (2007) Polym Int 56:773–778CrossRefGoogle Scholar
  60. 60.
    Oliver W, Pharr G (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  61. 61.
    Rau K, Singh R, Goldberg E (2002) Mater Res Innovat 5:151CrossRefGoogle Scholar
  62. 62.
    Tho KK, Swaddiwudhipong S, Lui SZ, Zeng K-Y, Hua J (2004) J Mater Res 19:2498CrossRefGoogle Scholar
  63. 63.
    Alkorta J, Martines-Esnaola JM, Gil-Sevillano J (2005) J Mater Res 20:432CrossRefGoogle Scholar
  64. 64.
    Morel P, Jardret V (2002) Mater Res Soc Symp Proc 710:DD7.7.1-6Google Scholar
  65. 65.
    Brostow W (2009) Pure Appl Chem 81:417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science & EngineeringUniversity of North Texas (UNT)DentonUSA

Personalised recommendations