Journal of Materials Science

, Volume 45, Issue 1, pp 209–215 | Cite as

Solvent thermal synthesis and gas-sensing properties of Fe-doped ZnO

  • Wen-Hui Zhang
  • Wei-De ZhangEmail author
  • Jue-Fei Zhou


In this study, pure ZnO microbullets, ZnO–ZnFe2O4 composite, and ZnO–Fe2O3–ZnFe2O4 composite with micron structured balloons, rods, and particles were prepared by a simple solvent thermal process using methanol or ethanol as solvents. The influence of solvents on the composition and morphology of the products was studied, and their gas-sensing properties were also investigated. The morphology of ZnO microbullets synthesized in ethanol is similar to but more uniform than that of ZnO microbullets synthesized in methanol. The Fe-doped ZnO synthesized in ethanol contains many micron particles homogeneously dispersing on the surface of the microbullets, which is composed of hexagonal wurtzite ZnO and franklinite ZnFe2O4, while Fe-doped ZnO prepared in methanol consists of micron structured balloons, rods, and particles, which is composed of hexagonal wurtzite ZnO, hematite Fe2O3, and franklinite ZnFe2O4. Compared with pure ZnO and ZnO–ZnFe2O4 composite, the ZnO–Fe2O3–ZnFe2O4 composite presented high response, rapid response/recovery characteristics, good selectivity, and excellent stability to acetone at relatively low operating temperature of 190 °C. This sensor could detect acetone in wide range of 1–1000 ppm, which was expected to be a promising gas sensor for detecting acetone.


Fe2O3 ZnFe2O4 Micron Particle Hematite Fe2O3 Al2O3 Tube 



The financial support of the work by the Research Fund for the Doctoral Program of Higher Education (RFDP) under grant 20070561008 and Natural Science Foundation of China under grant 20773041 is greatly acknowledged. J.F. Zhou would like to thank Student Research Program of SCUT for the financial aid.


  1. 1.
    Navale SC, Ravi V, Mulla IS, Gosavi SW, Kulkarni SK (2007) Sens Actuator B 12:382CrossRefGoogle Scholar
  2. 2.
    Zhu BL, Xie CS, Wang AH, Wu J, Wu R, Liu J (2007) J Mater Sci 42:5416. doi: CrossRefGoogle Scholar
  3. 3.
    Nenov T, Yordanov S (1992) Sens Actuator B 8:117CrossRefGoogle Scholar
  4. 4.
    Zhang WD, Zhang WH, Ma XY (2009) J Mater Sci 44:4677. doi: CrossRefGoogle Scholar
  5. 5.
    Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ (2005) Appl Phys Lett 87:222106CrossRefGoogle Scholar
  6. 6.
    Shinde VR, Gujar TP, Lokhande CD (2007) Sens Actuator B 123:701CrossRefGoogle Scholar
  7. 7.
    Chang SJ, Hsueh TJ, Chen IC, Hsieh SF, Chang SP, Hsu CL, Lin YR, Huang BR (2008) IEEE T Nano Tech 7:754CrossRefGoogle Scholar
  8. 8.
    Kim KW, Cho PS, Kim SJ, Lee JH, Kang CY, Kim JS, Yoon SJ (2007) Sens Actuator B 123:318CrossRefGoogle Scholar
  9. 9.
    Zhu BL, Xie CS, Wang WY, Huang KJ, Hu JH (2004) Mater Lett 58:624CrossRefGoogle Scholar
  10. 10.
    Aygün S, Cann D (2005) Sens Actuator B 106:837CrossRefGoogle Scholar
  11. 11.
    Ge CQ, Xie CS, Cai SZ (2007) Mater Sci Eng B 137:53CrossRefGoogle Scholar
  12. 12.
    Tang HX, Yan M, Zhang H, Li SZ, Ma XF, Wang M, Yang DR (2006) Sens Actuator B 114:910CrossRefGoogle Scholar
  13. 13.
    Arshak K, Gaidan I (2005) Sens Actuator B 111–112:58CrossRefGoogle Scholar
  14. 14.
    Kuo GH, Wang HP, Hsu HH, Wang J, Chiu YM, Jou C, Hsu TF, Chen FL (2009) J Nanomater 2009: 316035 (1-3)Google Scholar
  15. 15.
    Xu JQ, Han JJ, Zhang Y, Sun YA, Xie B (2008) Sens Actuator B 132:334CrossRefGoogle Scholar
  16. 16.
    Shishiyanu ST, Shishiyanu TS, Lupan OI (2005) Sens Actuator B 107:379CrossRefGoogle Scholar
  17. 17.
    Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Sens Actuator B 115:247CrossRefGoogle Scholar
  18. 18.
    Li QH, Liang YX, Wan Q, Wang TH (2004) Appl Phys Lett 85:6389CrossRefGoogle Scholar
  19. 19.
    Lupan O, Chai GY, Chow L (2007) Microelectr J 38:1211CrossRefGoogle Scholar
  20. 20.
    Gong H, Wang YJ, Teo SC, Huang L (1999) Sens Actuators B 54:232CrossRefGoogle Scholar
  21. 21.
    Jing Z, Wu S (2006) Mater Lett 60:952CrossRefGoogle Scholar
  22. 22.
    Jie Z, Hua HL, Shan G, Hui Z, Gui ZJ (2006) Sens Actuators B 115:460CrossRefGoogle Scholar
  23. 23.
    Xie H, Yang Q, Sun X, Huang Y (2006) Sens Actuators B 113:887CrossRefGoogle Scholar
  24. 24.
    Li X, Zhang G, Cheng F, Guo B, Chen J (2006) J Electrochem Soc 153:H133CrossRefGoogle Scholar
  25. 25.
    Jing Z, Wang Y, Wu S (2006) Sens Actuators B 113:177CrossRefGoogle Scholar
  26. 26.
    You LM, Huo LH, Cheng XL, Zhao H, Gao S (2008) Chin J Inorg Chem 24:1035Google Scholar
  27. 27.
    Jiang Y, Song W, Xie C, Wang A, Zeng D, Hu M (2006) Mater Lett 60:1374CrossRefGoogle Scholar
  28. 28.
    Zhang WH, Zhang WD (2008) Sens Actuator B 134:403CrossRefGoogle Scholar
  29. 29.
    Huang Y, Lin J, Ding XX, Tang C, Gu CZ, Qi SR (2007) Mater Lett 61:697CrossRefGoogle Scholar
  30. 30.
    Watson J (1984) Sens Actuators 5:29CrossRefGoogle Scholar
  31. 31.
    Huang XJ, Meng FL, Pi ZX, Xu WH, Liu JH (2004) Sens Actuators B 99:444CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Nano Science Research Center, School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations