Journal of Materials Science

, Volume 45, Issue 1, pp 177–181 | Cite as

Synthesis and formation of alumina whiskers from hydrothermal solution

  • Jie Li
  • Wu LiEmail author
  • Xueying Nai
  • Shaoju Bian
  • Xin Liu
  • Ming Wei


Al2O3 whiskers with an average length of 5 μm have been synthesized from hydrothermal solution. Al(NO3)3 and urea were mixed and put into a Teflon-lined stainless steel autoclave and then treated at 120 °C to fabricate precursor whiskers NH4Al(OH)2CO3 (AACH). AACH whiskers were heated at 1200 °C in a furnace to obtain Al2O3 whiskers. The time-dependent examinations revealed that the formation process of AACH whiskers involves two sequential processes: a short liquid–solid deposition process in the initial stage and a long Ostwald ripening process. During calcinations, AACH transforms to amorphism then to α-Al2O3. The escape of NH3 and CO2 induced the distortion and toothlike morphology on the surface of the Al2O3 whiskers.


TiAl3 Cyanuric Acid Irregular Particle Single Crystal Alumina Alumina Borate 



The authors would like to thank the Western Personnel Training Plan of Chinese Academy of Sciences (No. 0810071031) and the Science and Technology Office of Qinghai province for financial support.


  1. 1.
    Shi QZ, Liu YC, Gao ZM, Zhao Q (2008) J Mater Sci 43:1438. doi: CrossRefGoogle Scholar
  2. 2.
    Wang HB, Northwood D (2006) J Mater Sci 41:1697. doi: CrossRefGoogle Scholar
  3. 3.
    Kim SW, Lee SG, Kim JK, Kwon JY, Park HC (2004) J Mater Sci 39:1445. doi: CrossRefGoogle Scholar
  4. 4.
    Milewski JV (1992) Polym Compos 13:223CrossRefGoogle Scholar
  5. 5.
    Parvizi-Majidi A (2005) Whiskers. Department of Mechanical Engineering and the Materials Science Program, Newark University of Delaware, United States, p 1Google Scholar
  6. 6.
    Webb WW, Forgeng WD (1957) J Appl Phys 28:1449CrossRefGoogle Scholar
  7. 7.
    Devries RC, Sear GW (1959) J Chem Phys 31:1256CrossRefGoogle Scholar
  8. 8.
    Edwards PL, Happel RJ (1962) J Appl Phys 33:826CrossRefGoogle Scholar
  9. 9.
    Wiedemann HG, Sturzenegger E (1974) Naturwissenschaften 61:65CrossRefGoogle Scholar
  10. 10.
    Hayashi T, Mihoya M, Yamai I, Saito H, Hirano SI (1987) J Mater Sci 22:1305. doi: CrossRefGoogle Scholar
  11. 11.
    Valcarcel V, Souto A, Guitian F (1998) Adv Mater 10:138CrossRefGoogle Scholar
  12. 12.
    Valcarcel V, Cerecedo C, Guitian F (2003) J Am Ceram Soc 86:1683CrossRefGoogle Scholar
  13. 13.
    Cerecedo C, Valcarcel V, Gomez M, Guitian F (2006) J Am Ceram Soc 89:323CrossRefGoogle Scholar
  14. 14.
    Li YF, Qin CD, Ng DHL (1999) J Mater Res 14:2997CrossRefGoogle Scholar
  15. 15.
    Ng DHL, Yu P, Ma NG, Lo CK, Kwok WY, Yau MY, To CY, Li TK, Deng CJ (2006) J Eur Ceram Soc 26:1561CrossRefGoogle Scholar
  16. 16.
    Okada K, Mutoh H, Otsuka N, Yano T (1991) J Mater Sci Lett 10:588CrossRefGoogle Scholar
  17. 17.
    Yu ZQ, Du YW (1998) J Mater Res 13:3017CrossRefGoogle Scholar
  18. 18.
    Zhang LZ, Zhang CC (2005) Key Eng Mater 280–283:1021Google Scholar
  19. 19.
    Janeković A, Matijević E (1985) J Colloid Interface Sci 103:436CrossRefGoogle Scholar
  20. 20.
    Mitsui I (1977) Nippon densi zairyo Gijutsu Kyokai Shu-ki Keon Gaiyoshu 14:5Google Scholar
  21. 21.
    Ma CC, Zhou XX, Xu X, Zhu T (2001) Mater Chem Phys 72:374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jie Li
    • 1
    • 2
  • Wu Li
    • 1
    Email author
  • Xueying Nai
    • 1
  • Shaoju Bian
    • 1
  • Xin Liu
    • 1
  • Ming Wei
    • 1
  1. 1.CAS Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt LakesChinese Academy of SciencesXiningChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations