Journal of Materials Science

, Volume 45, Issue 1, pp 168–176 | Cite as

Anisotropic thermal properties in orthorhombic perovskites

  • B. Steele
  • A. D. Burns
  • A. Chernatynskiy
  • R. W. Grimes
  • S. R. Phillpot
Article

Abstract

The structure, elastic properties, thermal expansion, and thermal conductivity of the orthorhombic-structured A3+B3+O3 perovskites are determined using atomistic simulations with classical potentials. When considered as pseudo-cubic monoclinic systems, they show relatively small deviations in structure and properties from their cubic perovskite parent phase. The variations in properties are shown to be related to the magnitude of the tilting of the BO6 octahedra, which in turn is related to the relative sizes of the A and B ions, as encapsulated in the tolerance factor.

Notes

Acknowledgements

We are happy to acknowledge valuable conversations with Prof. David Clarke (Harvard) and Prof. Susan Sinnott (UF). This work was supported by a Materials World Network Project, NSF DMR-0710523 and EPSRC EP/F026463/1. The work of AC was supported by DARPA.

References

  1. 1.
    Meier SM, Gupta DK (1994) J Eng Gas Turbines Power 116:250CrossRefGoogle Scholar
  2. 2.
    Clarke DR, Levi CG (2003) Ann Rev Mater Res 33:383CrossRefADSGoogle Scholar
  3. 3.
    Winter MR, Clarke DR (2007) J Am Ceram Soc 90:533CrossRefGoogle Scholar
  4. 4.
    Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Thunder BayGoogle Scholar
  5. 5.
    Levy MR, Grimes RW, Sickafus KE (2004) Philos Mag 84:533CrossRefADSGoogle Scholar
  6. 6.
    Jiang S, Chan S (2004) J Mater Sci 39:4405. doi: 10.1023/B:JMSC.0000034135.52164.6b CrossRefADSGoogle Scholar
  7. 7.
    Shannon RD (1976) Acta Crystallogr A32:751ADSGoogle Scholar
  8. 8.
    Glazer AM (1972) Acta Crystallogr B28:3384Google Scholar
  9. 9.
    International Tables for Crystallography Online (2006) Springer, New YorkGoogle Scholar
  10. 10.
    Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, OxfordGoogle Scholar
  11. 11.
    Gale JD, Rohl A (2003) Mol Simul 29:291MATHCrossRefGoogle Scholar
  12. 12.
    Gale JD (1997) J Chem Soc Faraday Trans 93:629CrossRefGoogle Scholar
  13. 13.
    Turney JE, McGaughey AJH, Amon CH (2009) Phys Rev B 79:224305CrossRefADSGoogle Scholar
  14. 14.
    Sławiński W, Przeniosło R, Sosnowska I, Brunelli M, Bieringer M (2007) Nucl Instrum Methods B 254:149CrossRefADSGoogle Scholar
  15. 15.
    Schelling PK, Phillpot SR, Grimes RW (2004) Philos Mag Lett 84:127CrossRefADSGoogle Scholar
  16. 16.
    Williford R, Stevenson J, Chou S, Pederson L (2001) J Solid State Chem 156:394CrossRefADSGoogle Scholar
  17. 17.
    Schelling PK, Phillpot SR (2001) J Am Ceram Soc 84:2997CrossRefGoogle Scholar
  18. 18.
    Stevens RJ, Zhigilei LV, Norris PM (2007) Int J Heat Mass Transf 50:3977MATHCrossRefGoogle Scholar
  19. 19.
    Yates B, Cooper RF, Pojur AF (1972) J Phys C Solid State Phys 5:1046CrossRefADSGoogle Scholar
  20. 20.
    Hummer DR, Heaney PJ, Post JE (2008) Powder Diffr 23:267CrossRefADSGoogle Scholar
  21. 21.
    Usvyat DE, Evarestov RA, Smirnov VP (2004) Int J Quantum Chem 100:352CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B. Steele
    • 1
  • A. D. Burns
    • 1
  • A. Chernatynskiy
    • 1
  • R. W. Grimes
    • 2
  • S. R. Phillpot
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations