Advertisement

Journal of Materials Science

, Volume 45, Issue 1, pp 158–167 | Cite as

Elastic properties of thermoplastic elastomers based on poly(tetramethylene oxide) and monodisperse amide segments

  • G. J. E. Biemond
  • Reinoud J. GaymansEmail author
Article

Abstract

The elastic properties of thermoplastic elastomers based on poly(tetramethylene oxide) and monodisperse amide hard segments (HS) were studied in compression and tensile mode as well as with stress relaxation (SR) measurements. For these copolymers the compression set values were low and increased with the modulus and temperature. At low strains (<50%) the tensile set (TS) values were low and the strain recovered almost completely with time. Furthermore, the TS values increased with strain, due to a deformation of the crystallites and a strain hardening of the polyether segments. During the SR measurements, two processes were observed: a fast initial decay in the first 10 s followed by a relaxation process that was dependant on the logarithm of time. The initial decay during the first seconds increased with the modulus of the copolymers and with the applied strain. The SR values for the second process, normalised to the stress at 100 s, were independent of the strain (within the range of 25–300%) and only little dependant on the modulus of the system. In comparison to the literature data the copolymers with the monodisperse HS displayed improved elastic properties and low SR values.

Keywords

Stress Relaxation Applied Strain Hard Segment Yield Strain Thermoplastic Elastomer 

Notes

Acknowledgement

This work was financed by the Dutch Polymer Institute (DPI, The Netherlands), project number 137.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Holden G, Legge NR, Quirk R, Schroeder HE (1996) Thermoplastic elastomers. Hanser, MunichGoogle Scholar
  2. 2.
    Fakirov S (2005) Handbook of condensation thermoplastic elastomers. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Hepburn C (1992) Polyurethane elastomers. Elsevier, LondonCrossRefGoogle Scholar
  4. 4.
    Van der Schuur JM, Gaymans RJ (2007) Polymer 48:1998CrossRefGoogle Scholar
  5. 5.
    Ward IM (1979) Mechanical properties of solid polymers. Wiley, New YorkGoogle Scholar
  6. 6.
    Browstow W, Cornelissen RD (1986) Failure of plastics. Hanser, MunichGoogle Scholar
  7. 7.
    Hertzberg RW (1989) Deformation and fracture mechanics of engineering materials. Wiley, New YorkGoogle Scholar
  8. 8.
    Mc Crum NG, Buckley CP, Bucknall CB (2001) Principles of polymer engineering. Oxford University Press, New YorkGoogle Scholar
  9. 9.
    McLean RS, Sauer BB (1999) J Polym Sci Polym Phys 37:859CrossRefGoogle Scholar
  10. 10.
    Garrett JT, Runt J, Lin JS (2000) Macromolecules 33:6353CrossRefGoogle Scholar
  11. 11.
    Seth JP, Xu J, Wilkes GL (2003) Polymer 44:743CrossRefGoogle Scholar
  12. 12.
    Sauer BB, McLean S, Gaymans RJ, Niesten MCEJ (2004) J Polym Sci Polym Phys 42:1783CrossRefGoogle Scholar
  13. 13.
    Versteegen RM, Kleppinger R, Sijbesma RP, Meijer EW (2006) Macromolecules 39:772CrossRefGoogle Scholar
  14. 14.
    Van der Schuur JM, Gaymans RJ (2006) J Polym Sci Polym Chem 44:4769CrossRefGoogle Scholar
  15. 15.
    Niesten MCEJ, Gaymans RJ (2001) Polymer 42:6199CrossRefGoogle Scholar
  16. 16.
    Bonart R, Morbitzer L, Hentze J (1969) J Macromol Sci Phys 3:337CrossRefGoogle Scholar
  17. 17.
    Sauer BB, McLean RS, Brill DJ, Londono DJ (2002) J Polym Sci Polym Phys 40:1727CrossRefGoogle Scholar
  18. 18.
    Niesten MCEJ, Krijgsman J, Harkema S, Gaymans RJ (2001) J Appl Polym Sci 82:2194CrossRefGoogle Scholar
  19. 19.
    Van der Schuur JM, de Boer J, Gaymans RJ (2005) Polymer 46:9243CrossRefGoogle Scholar
  20. 20.
    Beck RA, Truss RW (1999) J Appl Polym Sci 71:959CrossRefGoogle Scholar
  21. 21.
    Kim HD, Lee TJ, Huh JH, Lee DJ (1999) J Appl Polym Sci 73:345CrossRefGoogle Scholar
  22. 22.
    Khan AS, Lopez-Pamies O (2002) Int J Plast 18:1359CrossRefGoogle Scholar
  23. 23.
    Biemond GJE, Feijen J, Gaymans RJ (2008) J Mater Sci 43:3689. doi: https://doi.org/10.1007/s10853-008-2592-3 CrossRefGoogle Scholar
  24. 24.
    Le HH, Lupke T, Pham T, Radusch H-J (2003) Polymer 44:4589CrossRefGoogle Scholar
  25. 25.
    Patel M, Soames M, Skinner AR, Stephens TS (2004) Polym Degrad Stabil 83:111CrossRefGoogle Scholar
  26. 26.
    Prisacariu C, Buckley CP, Caraculacu AA (2005) Polymer 46:3884CrossRefGoogle Scholar
  27. 27.
    Akinay AE, Brostow W, Castano VM, Maksimov R, Olszynski P (2002) Polymer 43:3593CrossRefGoogle Scholar
  28. 28.
    Biemond JE, Feijen J, Gaymans RJ (2007) J Appl Polym Sci 105:951CrossRefGoogle Scholar
  29. 29.
    Niesten MCEJ, Harkema S, van der Heide E, Gaymans RJ (2001) Polymer 42:1131CrossRefGoogle Scholar
  30. 30.
    Krijgsman J, Husken D, Gaymans RJ (2003) Polymer 44:7573CrossRefGoogle Scholar
  31. 31.
    Biemond GJE, Feijen J, Gaymans RJ (2008) J Appl Polym Sci 90:1389Google Scholar
  32. 32.
    Krijgsman J, Gaymans RJ (2004) Polymer 45:437CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://doi.org/creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of Science and Technology University of TwenteEnschedeThe Netherlands
  2. 2.Dutch Polymer InstituteEindhovenThe Netherlands
  3. 3.Sabic-EuropeGeleenThe Netherlands

Personalised recommendations